Head Injury Workshop

Danny G Thomas MD MPH
Associate Professor of Pediatrics
Pediatric Emergency Medicine
Medical College of Wisconsin

Head Injury Workshop

Agenda

<table>
<thead>
<tr>
<th>FORMAT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Lecture</td>
</tr>
<tr>
<td>Imaging</td>
<td>Lecture / Cases</td>
</tr>
<tr>
<td>Decision</td>
<td>Lecture / Cases</td>
</tr>
<tr>
<td>Acute Sideline Management</td>
<td>Interactive demonstration</td>
</tr>
<tr>
<td>Concussion Assessment</td>
<td>Lecture / Cases</td>
</tr>
<tr>
<td>in the Office</td>
<td></td>
</tr>
<tr>
<td>- SCAT3 / Cervical spine pain</td>
<td>Lecture / Cases</td>
</tr>
<tr>
<td>- VOMS</td>
<td></td>
</tr>
<tr>
<td>- BESS</td>
<td></td>
</tr>
<tr>
<td>Return to Life</td>
<td>Lecture / Cases</td>
</tr>
<tr>
<td>Return to School</td>
<td>Lecture / Cases</td>
</tr>
<tr>
<td>Return to Play</td>
<td>Lecture / Cases</td>
</tr>
<tr>
<td>Retirement</td>
<td>Lecture / Cases</td>
</tr>
</tbody>
</table>

Pediatric Head Trauma:
A Significant Burden

- Deaths: 7,000/yr
- Hospitalizations: 95,000/yr
- ED Visits: > 500,000/yr
- Primary Care Office Visits: Assume numerous, No data
- 60%↑ in ED visits in last 10 years
- Hospital care costs alone exceed 1 billion/year
- 29,000 permanent disabilities annually

Clinical Challenges

- Identification of children with significant intracranial injury
- Identify and assess patients with Concussion
- Improve concussion recovery

PECARN Head Injury Study
Methods and Subjects

- Prospective Cohort Study, < 18 yo
- Presented within 24 hrs blunt head injury
- mTBI = GCS 14 - 15
- “ci TBI” (“clinically important”)
 - Defined as Death, Neurosurgery, Intubation, Hospital admission > 2 nights

Study Results

- N = 42,412 patients from 25 EDs

<table>
<thead>
<tr>
<th>Derivation Set</th>
<th>Validation Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>33,765</td>
<td>8,627</td>
</tr>
</tbody>
</table>

- GCS = 15 in 97%
- CT performed in 35.3% (n = 14,969)
- ciTBI in 0.9% (n = 376)
 - Surgery in 0.1% (n = 60)
 - No Deaths

Prediction Rules for No “ciTBI”

Age younger than 2 years

- Normal Mental Status
- No palpable skull fracture
- No scalp hematoma - except frontal
- No LOC or LOC < 5 seconds
- Non-severe injury mechanism
- Acting normally according to parents

(NPV 100%; Sensitivity 100%)

Age 2 years and older

- Normal Mental Status
- No LOC
- No vomiting
- Non-severe injury
- No basilar fracture
- No severe headache

(NPV 99.95%; Sensitivity 96.8%)

Imaging Cases

- Case 1
- Case 2
- Case 3
- Case 4

PECARN Imaging Guidelines (<2 y/o)

- GCS>13 or other signs of altered mental status, or palpable skull fracture
 - Yes → CT recommended
 - No → Observation vs. CT on the basis of other clinical factors including:
 - Physician experience
 - Multiple versus isolated findings
 - Worsening symptoms or signs after emergency department observation
 - Age < 3 months
 - Parental preference

- Occipital or parietal or temporal scalp hematoma, or history of LOC < 5 s, or severe mechanism of injury, or not acting normally per parent
 - Yes
 - No
 - 12.8% of population
 - 97.2% risk of CT

- CT not recommended

PECARN Imaging Guidelines (>2 y/o)

- GCS>13 or other signs of altered mental status, or signs of basilar skull fracture
 - Yes → CT recommended
 - No → Observation vs. CT on the basis of other clinical factors including:
 - Physician experience
 - Multiple versus isolated findings
 - Worsening symptoms or signs after emergency department observation
 - Parental preference

- History of LOC, or history of vomiting, or severe mechanism of injury, or severe headache
 - Yes
 - No
 - 6.0% of population
 - 94.0% risk of CT

- CT not recommended

Imaging Cases

- Man Down…

You are at the sidelines of a Friday night football game. During the 2nd half kickoff return, the tight end attempts to tackle a wide receiver. The instant the 2 hit, the tight end falls and he lays face down motionless on the ground.
What Do You Do?

- What happened?
- How are you going to approach this athlete?

Collapse During Collision Sports

- **Head injury**
 - Traumatic Brain Injury
 - Concussion
- **Cervical Spine Trauma**
- **Other Causes**
 - Cardiac Event: Arrhythmia
 - Hypoglycemia / Electrolyte derangement
 - Heat Stroke
 - Drug ingestion

Sports-Related Concussion

The Sideline: On-Field Recognition

- **Signs Observed**
 - Appears dazed
 - Confused about game
 - Forgets plays
 - Unaware of game, score, opponent
 - Moves clumsily
 - LOC
 - Behavior change

- **Symptoms Reported by Athlete**
 - Headache
 - Nausea
 - Off-balance or dizzy
 - Double/blurred vision
 - Sensitivity to light/noise
 - Feels sluggish
 - Feels foggy

Sports-Related Concussion: The Sideline

- **On-Field Mental Status Evaluation**
 - Orientation
 - Game, period, opponent, score, stadium, city
 - Amnesia
 - Anterograde: Repeat "Girl, Dog, Green"
 - Retrograde: Recall the hit and events prior
 - Concentration
 - Repeat days of week backward (starting w/ today)
 - Word List Memory
 - Repeat the 3 words "Girl, Dog, Green"

Sports-Related Concussion: The Sideline

- **Signs of Deteriorating Neurologic Function**
 - Worsening headache
 - Seizures
 - Neck pain
 - Focal neurologic signs
 - e.g. Focal weakness, numbness
 - Repeated vomiting
 - Behavior change
 - Drowsy appearance
 - Increased confusion or irritability
 - Slurred speech

Back to Our Case

So How do you approach the man down?
3-25% of patients with SC injury develop neurological deficits associated with manipulation during resuscitation or transport.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Level of Consciousness</th>
<th>Cardiorespiratory Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abnormal</td>
<td>Compromised</td>
</tr>
<tr>
<td>2</td>
<td>Abnormal</td>
<td>Normal</td>
</tr>
<tr>
<td>3</td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Scenario 1: Altered LOC and Unstable CRS
- Rare event
- Respiratory distress due to
 - Obstruction of the airway can be caused by a foreign body, facial fractures, or laryngeal/tractal injury
 - Depressed level of consciousness.
 - Upper cervical spinal cord injury
 - Other: pneumothorax, asthma, and anaphylaxis.
- Circulatory collapse due to
 - Primary cardiac event is uncommon
 - Spinal Shock
 - Hypovolemia (spleenic rupture)

Scenario 1
- ENACT EMERGENCY PLAN
- Clear the air way while maintaining neutral head position (no chin lift)
- Move from prone to supine
- Remove face mask
- Oral airway if needed
- Assist ventilations if needed (BVM)
- Intubation if patient is apneic, unable to oxygenate, aspiration risk, severe TBI
- Should you remove his helmet?

Equipment Removal Guidelines
- Immobilize C-spine with helmet and shoulder pads in place.
- Helmet should be removed if:
 - The face mask, helmet or chin strap interfere with CPR
 - Helmet interferes with immobilization for transport
 - Shoulder pads are removed
- Shoulder Pads should be removed if:
 - Multiple injuries requiring full access to the shoulder area
 - Shoulder pads don’t fit
 - CPR is inhibited by shoulder pads
 - Helmet is removed

Management of Protective Equipment
- Football and ice hockey helmets with the shoulder pads maintain a neutral alignment to the cervical spine.
- Athlete is best cared for by immobilization of the cervical spine with the helmet and shoulder pads in place.
- Palumbo et al
 - Removal of the helmet or the shoulder pads from a cadaveric model with C5-6 instability resulted in a significant change in cervical lordosis
- Waninger et al
 - Backboard immobilization of helmeted ice hockey and lacrosse players effectively limited cervical motion during transportation.
Scenario 2: Altered LOC and Stable CRS

- After primary survey perform a brief on field neuro exam
 - GCS, Pupils, EOM, visual fields, gross motor and sensory exam
- Carefully log rolled to supine
- Altered LOC= remove face mask
- LOC is usually related to CHI
 - consider other causes hypoglycemia, hyperthermia, drug overdose
- All unconscious athletes are presumed to have a C spine fracture

Scenario 3: Normal LOC and Stable CRS

- Primary survey, Stabilize C spine and assess for C-Spine injury

Assessment

Improving Assessment of Injury:

- Useful higher level neurocognitive testing can take over an hour to complete
- Efficient products may lack predictive utility
- Better assessment of risk factors for prolonged recovery
- Better assessment of Balance and Visual motor control

Risk factor assessment

- Many conflicting risk factors for recovery have been reported.
 - older children with loss of consciousness, headache, and/or nausea/vomiting, initial dizziness, and premorbid conditions
- Zemek et. al conducted the 5P study
 - Multicenter derivation and validation model
 - Recruited 3063 patients 5-17 years with concussion
 - Subject completed a survey of predictive factors
 - Primary outcome: (31%, N=801)
 - Proportion with persistent concussion symptoms at 1 month
5 P Clinical Risk Score

- Risk increases:
 - Age
 - Gender
 - Past Concussion*
 - H/o Migraine
 - Answers questions slowly
 - BESS errors
 - Headache
 - Sensitivity to noise
 - Fatigue

Assessment

SCAT3 / NECK

- Sports Concussion Assessment Test
- Cervical spine assessment

Assessment

Acute Balance Assessment

- ~36% of concussed athletes will have a balance problem in first 24 hrs post-injury
- How to assess
 - BESS
 - Tandem Gait

Assessment

Vestibular/Oculomotor Assessment

- Emerging evidence suggests up 50% may experience dizziness post-injury
- How to assess
 - Vestibular Ocular-Motor Screening (VOMS)
 1. Smooth pursuits
 2. Saccades
 3. Vestibular ocular reflex
 4. Visual motion sensitivity
 5. Near-point-of-convergence distance

Assessment

Concussion Is Treatable

Individualized approach is key!
- Step 1: "When in doubt, sit them out"
- Step 2: Resume Activities of Daily living
- Step 3: Get back to school (+/- support)
- Step 4: Get back to sport (w/ clearance)

Not recovering fast enough, see a specialist
- Tx: Rehab, PT, OT, CBT, Medications

Assessment

Symptom Management

- There is no standardized approach to the management of acute concussion symptoms.
- Sleep and Rest may be the most effective strategy to acute symptom management
Physical

- Nausea
 - Not usually a sustained symptom
 - May be secondary to headaches or medications
- Dizziness
 - Often resolves in days
 - Persistent dizziness
 - Vestibular rehabilitation
 - Consider meclizine, scopolamine
- Neck Pain
 - Ensure not more significant injury
 - PT
 - Medications
 - Ergonomic fixes
- Photo & Phonophobia
 - Sunglasses/hat
 - Ear plugs
 - Avoid loud classes
 - Choir, music, lunchroom, etc.

Emotional

- Awareness!
 - Expect frustration, sadness, etc.
- Highest risk
 - Pre-existing condition
 - Psychosocial problems
 - Family issues
- School psychologist/counselor
- Cognitive Behavioral Therapy
- Medications

Sleep

- Schedule breaks (school, home & work)
- Sleep
 - Very important for recovery
 - Do not wake at night
 - Power nap (30-40min)
 - Good sleep hygiene
 - No cell phone or electronics in room
 - Consistent bedtime
 - Keep on school bedtime
 - Aim for 8-10hrs per night
 - Medications
 - Melatonin, Trazodone, zolpidem, amitriptyline, gabapentin

Emotional

- Awareness!
 - Expect frustration, sadness, etc.
- Highest risk
 - Pre-existing condition
 - Psychosocial problems
 - Family issues
- School psychologist/counselor
- Cognitive Behavioral Therapy
- Medications

Activity

- It’s hard to find the right balance

Other Considerations in Concussion Management

- Support outside the athletic arena
 - Alert and educate key school personnel
 - Gradual reintegration back to school
 - Educational Support
- Informal accommodations for most
- Formal interventions in few cases
Improving Post-injury Management:
Stepwise return-to-play for high risk activities

1. Rest until asymptomatic
 - No signs or symptoms at rest
2. Stepwise return to play
 1. Light aerobic activity (e.g. walking, stationary bike)
 2. Sport-specific activity (e.g. running in soccer, skating in hockey)
 3. Non-contact training drills
 4. Full-contact practice training
 5. Game Play

*International Symposia, Vienna (2001); Zurich (2012)

Return to Play

• Not evidence based
 – Ideal for first time concussion without prolonged recovery
 – Repeat injuries & prolonged recovery should be extended
• Asymptomatic for 24+ hrs
 – Watch for excuses to be asymptomatic
 – Full academics
 – No meds
 – Normalized neuropsychological evaluation
• Usually Progress 1 step per day
 – If symptoms return, stop and call (go back 1 step)
How Many Are Too Many?

- Retirement is tricky & unique
 - Should be seen by experienced provider
 - Consideration to prolonged time away from contact/collision sports
- Chronic Traumatic Encephalopathy
 - Relationship between concussion, sub-concussive blows and CTE is unclear
 - Begins in mid-life (usually after retirement)

When to Discuss Retirement

or at least significant time away from contact

- Athlete/parental concern
- Rapidly occurring (3 in 9 months?)
- Lower injury threshold
- Prolonged symptoms (?6+ months)
- Persistent symptoms (post-traumatic migraine or loss of cognitive function)
- Psychosocial implications
 - Are there worse things then potential concussions?