Kidney Stones: Diagnosis, Treatment and Prevention

CARLEY DAVIS, MD
ASSOCIATE PROFESSOR
DEPARTMENT OF UROLOGY
MEDICAL COLLEGE OF WISCONSIN

Objectives

- Epidemiology
- Etiology
- Stone types and characteristics
- Making the diagnosis
- Treatment options
- Prevention strategies

Epidemiology

- Increasing prevalence over the past four decades
- NHANES data: 10.6% in men, 7.1% in women
- Peaks in 4-6th decade of life
- Links to other disease:
 - HTN
 - Obesity
 - DM

Etiology – Disease States

- Primary hyperparathyroidism
- Increased PTH
- Resorptive hypercalciuria
- Parathyroidectomy
- Gout
- Hyperuricemia and hyperuricosuria
- Type 2 DM and obesity
- Insulin resistance leads to low urine pH and hypercalciuria
- Malabsorptive GI disorders
- Fat malabsorption, increased permeability, dehydration, acidosis

Objectives

- Epidemiology
- Etiology
- Stone types and characteristics
- Making the diagnosis
- Treatment options
- Prevention strategies

Objectives

- Epidemiology
- Etiology
- Stone types and characteristics
- Making the diagnosis
- Treatment options
- Prevention strategies
Etiology – Genetic Diseases

- Primary Hyperoxaluria
 - Rare autosomal recessive disease
 - Early renal failure treated with K-L transplant

- Cystinuria
 - Autosomal recessive defect in renal transport of COLA
 - High cystine excretion leads to supersaturation

- Dent disease
 - X-linked disorder presenting mainly in males
 - Proteinuria, hypercalciuria, ESRD

- Distal RTA
 - Metabolic acidosis with setting of high urine pH
 - Hypocitraturia, hyperchloremia, hypokalemia

Etiology – Drugs

- Drugs that cause urinary changes:
 - Topiramate and acetazolamide
 - Carbonic anhydrase inhibitors
 - Acidosis, hypokalemia, hyperuricemia, hypocitraturia

- Drugs that can form crystals:
 - Triamterene
 - Ephedrine
 - Some protease inhibitors – Indinavir
 - Overuse of supplements
 - Vitamin C, calcium, Vitamin D

Etiology

- Chronic infection
 - Urease-producing organisms
 - High urine pH
 - Struvite stones

- SCI patients
 - Immobilization
 - Chronic indwelling catheters
 - Chronic colonization

Etiology

- Anatomic abnormalities
 - Ureteropelvic junction obstruction (UPJO)
 - Horseshoe kidney
 - Medullary sponge kidney

Etiology

- Diet
 - Low fluid intake
 - High intake of meat
 - Low or high calcium intake
 - Limited intake of fruits or vegetables
 - Excessive sodium intake
 - High oxalate intake with low calcium intake

Objectives

- Epidemiology
- Etiology
- Stone types and characteristics
- Making the diagnosis
- Treatment options
- Prevention strategies
Types of Kidney Stones

- Calcium oxalate – 60%
- Calcium phosphate – 20%
- Struvite – 7%
- Uric Acid – 7%
- Cystine – 3%
- Drug-induced - <1%

Visible on KUB?

- Radio-opaque
 - Calcium oxalate
 - Calcium phosphate
 - Struvite
 - Cystine
- Radiolucent
 - Uric acid
 - Matrix
 - Triamterene
 - Indinavir (also invisible on CT)

Objectives

- Epidemiology
- Etiology
- Stone types and characteristics
- Making the diagnosis
- Treatment options
- Prevention strategies

Making the Diagnosis

- Classic symptoms
 - Colicky flank pain
 - Nausea/vomiting
 - Hematuria
 - Irritative voiding symptoms

Making the Diagnosis

- Exam
 - Vitals
 - CVA tenderness
- Labs
 - CBC
 - BMP
 - U/A
- Imaging in the acute setting
 - CT stone protocol
Objectives

- Epidemiology
- Etiology
- Stone types and characteristics
- Making the diagnosis
- Treatment options
- Prevention strategies

Treatment Options

- Observation
 - Pain controlled
 - Able to tolerate PO intake
 - No evidence of urinary tract infection
 - No fever
 - Negative urinalysis
 - Normal WBC count
 - Stone is passable

- Is stone passable?
 - Width of stone is most significant predictor
 - <4mm = 80%
 - 4-6mm = 59%
 - >6mm = 21%
 - Stone location at presentation is also important
 - Proximal = 22%
 - Middle = 46%
 - Distal = 71%
Treatment Options

- How long will it take to pass
 - 95% of stones ≤ 5mm will pass within 40 days
 - About 5% of stones < 2mm require surgical intervention
 - 50% of stones ≥ 5mm require surgical intervention

Treatment Options

- All criteria for observation are met
 - NSAIDs
 - Narcotics
 - Flomax – controversial after recent SUSPEND trial
 - Pickard et al, Lancet 2015
 - Strain urine
 - Follow-up with Urology in 2 weeks
 - Bring stone if collected
 - Stone needs to pass or be surgically removed in 6-8 weeks

Treatment Options

- Indications for immediate intervention
 - Uncontrolled pain, inability to tolerate PO, infection
 - Bilateral ureteral stones or stone in solitary kidney
 - Significantly elevated creatinine
 - Immunocompromised or diabetic patient
 - Size/location unlikely to pass

Treatment Options

- Immediate intervention
 - Ureteral stent placement under local or MAC anesthesia
 - Nephrostomy tube placement by Interventional Radiology
 - UTI suspected
 - Await culture results
 - Give 2 weeks of culture specific antibiotics
 - Definitive procedure after treatment of UTI
 - Procedure depends on size and location of stone

Treatment Options

- Extracorporeal Shock Wave Lithotripsy (ESWL)
 - General anesthesia
 - Non-invasive with no ureteral stent
 - Stone needs to be visible on KUB
 - Good candidate
 - Low BMI, smaller stone, softer stone
 - Most common complication is bleeding
 - May need second procedure for incomplete passage or obstructing ureteral fragments

Treatment Options

- Ureteroscopy with LASER lithotripsy
 - General anesthesia
 - Instrumentation can be done on anticoagulation
 - Can treat stones up to 2 cm and multiple stones
 - Holmium laser can break any type of stone
 - Often requires post-op ureteral stent which is quite symptomatic
 - Rare need for second procedure if ureter is too narrow
 - Stent for 2 weeks and then repeat procedure
 - 1-3% chance of ureteral injury
 - Requires prolonged stent
Treatment Options

- Percutaneous Nephrolithotomy (PCNL)
 - General anesthesia, 2 night hospital stay
 - Reserved for > 2 cm stones
 - Nephrostomy access done by IR
 - Increased risk of bleeding
 - Post-op CT done to check for stone clearance
 - May need second look for any retained stones

Objectives

- Epidemiology
- Etiology
- Stone types and characteristics
- Making the diagnosis
- Treatment options
- Prevention strategies

Prevention Strategies - Diet

- Increase fluid – goal is 2L of urine per day (Borghi et al., 1996)
- Calcium intake 1000-1200mg per day
 - Preferably in food form
 - Supplements taken with meals, calcium citrate
- Low oxalate diet
- Moderate protein
 - 2-3 servings of animal per day
- Increase fruits and vegetables, especially citrus
- Low salt < 3000 mg/day
- Avoid Vitamin C supplements

Prevention Strategies - Medications

- Thiazide diuretics
 - Increases calcium reabsorption in the distal tubule
 - Volume depletion leads to calcium reabsorption in the proximal tubule
- Potassium citrate
 - Used in conjunction with thiazide to prevent hypokalemia and hypocitraturia
 - Goal is to alkalize urine to 6.5-7.0
- Allopurinol
 - Treats hyperuricemia and lowers urinary uric acid
 - Add if purine restriction is not adequate
 - Can reduce risk of both uric acid stones and calcium stones
In Summary

- Prevalence is increasing
- Stones are not an isolated disease
- Preferred imaging in the acute setting is a CT stone protocol
- Referral to urology for all stones
- Urgent referral for ureteral stone with uncontrolled symptoms, possible infection or large (> 6-7 mm) stone
- Treatment depends on size and location of stone
- Prevention strategies can decrease recurrence

References