Objectives

- To be able to diagnose some of the most common pediatric overuse injuries by:
 - History
 - Physical
 - Imaging - Role?

- To be able to treat some of the most common pediatric overuse injuries
- To be able to discuss with your athletes and their parents, viable prevention strategies

Introduction

- Pathophysiology of Overuse Injuries:
 - Decreased Recovery time
 - Lack of natural healing process to the stress of
 - Bones
 - Cartilage
 - Muscles
 - Tendons
 - Ligaments
 - Result - microtrauma --------- macrotrauma
 - Combine with poor mechanics, training mistakes, inadequate equipment, poor environment

Overview

1. Proximal Humeral Physeal Stress Injury – Little Leaguer’s Shoulder
2. Medial Epicondylar Apophyseal Avulsion Fractures – Little Leaguer’s Elbow
3. Osteochondritis Dissecans of the Capitellum
4. Spondylolysis
5. Distal Radial Physeal Stress Injury – Gymnast Wrist

Introduction

- Epidemiology
 - Hard to determine – under reported
 - Fluctuating symptoms
 - May or may not result in loss time from sport
 - More common in older children (13-17yo)
 - More common in females
 - Sports played
 - Differences in training, and neuromuscular/biomechanical changes during growth
 - Variations in bone structure, flexibility and strength
 - Hormonal influences
Introduction

- Physical and skeletal immaturity cause unique injuries in children
 - Growth plates
 - Thicker, more metabolically active periosteum and more porous
 - Tolerates greater degree of deformation
 - Faster remodeling and healing
 - Delayed and nonunion are rare
 - Low incidence of stiffness with immobilization

LITTLE LEAGUER’S SHOULDER

- **Prevalence in overhead sports**
 - Baseball – 11-14 y/o
 - Swimming
 - Gymnastics
 - Wrestling
 - Volleyball
- **Definition**
 - Chronic, repetitive microtrauma of the proximal humeral physis
 - Causes physeal widening and epiphysiolysis

LITTLE LEAGUER’S SHOULDER

- **On exam**
 - TTP over lateral, proximal humeral physis
 - Strength testing may be NL, but may have pain with resisted IR/ER, and/or abduction
 - ROM is usually NL.
 - Edema is uncommon
- **Imaging**
 - AP and lateral necessary with internal and external views.
 - Novel coronal-aligned shoulder view for comparison
 - Dx = physeal widening
 - May also see metaphyseal sclerosis, cyst formation, and/or fragmentation

LITTLE LEAGUER’S SHOULDER

- **Treatment**
 - Rest from offending activities
 - Evaluate athlete’s throwing mechanics and correct
 - Stretching and strengthening program – prevention of deconditioning
 - Gradual reintroduction of a throwing program (multiple protocols)

LITTLE LEAGUER’S SHOULDER

- **Prevention/RTP**
 - Strengthening and stretching of the shoulder girdle and core muscles
 - Addressing poor throwing mechanics
 - Limitations on pitches — new rules in place from the 2014 Little League International Board of Directors — have seen 50% reduction in overuse injuries
 - Problem:
 - 45% of youth baseball pitchers pitched in a league with no pitch counts;
 - 43.5% of youth baseball pitchers pitched on consecutive days
 - 30.4% of youth baseball pitchers pitched with multiple teams
 - 19% of youth baseball pitchers pitched multiple games in one day; and
 - 13.2% of youth baseball pitchers pitched year-round.
Little Leaguer's Shoulder

<table>
<thead>
<tr>
<th>Age</th>
<th>Daily Max (Pitches)</th>
<th>Required Rest (Pitches)</th>
<th>Required Rest (Pitches)</th>
<th>Required Rest (Pitches)</th>
<th>Required Rest (Pitches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 Days</td>
<td>1 Day</td>
<td>2 Days</td>
<td>3 Days</td>
</tr>
<tr>
<td>7-8</td>
<td>50</td>
<td>1-20</td>
<td>21-35</td>
<td>36-50</td>
<td>N/A</td>
</tr>
<tr>
<td>9-10</td>
<td>75</td>
<td>1-20</td>
<td>21-35</td>
<td>36-50</td>
<td>51-65</td>
</tr>
<tr>
<td>11-12</td>
<td>85</td>
<td>1-20</td>
<td>21-35</td>
<td>36-50</td>
<td>51-65</td>
</tr>
<tr>
<td>13-14</td>
<td>95</td>
<td>1-30</td>
<td>31-45</td>
<td>46-60</td>
<td>61-75</td>
</tr>
<tr>
<td>15-16</td>
<td>105</td>
<td>1-30</td>
<td>31-45</td>
<td>46-60</td>
<td>61-75</td>
</tr>
</tbody>
</table>

Little Leaguer's Elbow

- 9-14 y/o athletes involved in throwing and racket sports.
- Chronic overuse injury
- Inflammation due to repeated valgus stress on the medial epicondylar apophysis
- Can progress to avulsion fx of the medial epicondyle

Little Leaguer's Elbow

- Exam
 - Edema over medial epicondyle
 - Decreased ROM
 - Possible damage to sensory and/or motor function of the ulnar nerve
 - TTP of the medial epicondyle

Little Leaguer's Elbow

- Imaging
 - AP – best for small displaced fragments, Lateral
 - Oblique views of affected and contralateral elbow
 - Role of MRI?

Little Leaguer's Elbow

- Treatment
 - Nondisplaced and Displaced fractures less than 3mm
 - Immobilization in a posterior splint – pain and edema
 - Active ROM 5-7 days later to prevent contracture
 - ICE/NSAIDs
 - Splint discontinued after pain and edema have diminished
 - Displaced fractures greater than 3mm
 - Referral for surgical evaluation

Little Leaguer's Elbow

- Prevention/RTP
 - Aggressive strengthening and ROM – 4-6 weeks
 - Gradual return to throwing
 - Evaluation and correction of throwing mechanics

Osteochondritis Dissecans (OCD)

- JOCD
 - “Is and acquired condition of the joint that affects the articular surface and subchondral bone”
 - Etiology:
 - Trauma?, Ischemia?, Genetics?
 - Male to female ratio 2:1 – exact incidence unknown
 - Many cases go under or misdiagnosed
 - Lack of uniformity of classifying lesions
 - Rare before 10, and after 50yo
 - Highest incidence in teen years – 19 per 100,000 in females and 29 per 100,000 in males
 - Ratio may change due increased female sport participation
OCD of the Capitellum

• Common in sports with repetitive upper extremity use
 • Throwners, Gymnasts, weightlifters
• Usually 10 - 17 y/o
• Etiology - microtrauma
 • Exact etiology unknown
 • Believed to be repetitive valgus stress and shear forces during acceleration phase of throwing

OCD of the Capitellum

• Subjective findings
 • Pain with activity
 • Decreased ROM
 • Dull aching at rest
 • Catching and locking
• Objective findings
 • Effusion
 • Tenderness over the ant. radiocapitellar joint
 • Decreased ROM – especially extension > flexion

OCD of the Capitellum

• Differential Diagnosis
 • Panner’s Disease
 • Lateral ligament injury or tendinosis
 • Capitellum or radial head fracture
 • Loose body of other etiology – i.e. following an elbow dislocation

OCD of the Capitellum

• Panner’s Disease
 • Often used synonymously with OCD of the capitellum
 • Angular necrosis of the developing osseous nucleus within the entire chondral epiphysis
 • Analogous to Legg-Calve-Perthes Disease of the hip
 • Similar presentation to Capitellar OCD
 • Typically age – 6-10 y/o
 • Symptoms resolve with rest and activity modification
 • Deformity can occur if necrosis prolonged and collapse occurs

OCD of the Capitellum

• Imaging
 • X-ray
 • May be negative
 • May show rarefaction or radiolucency within the capitellum
 • May show angular ossification and cysts next to the articular surface
 • MRI
 • Helps determine the integrity of the articular cartilage

• Classification
 • Type 1 – No displacement of lesion and no fracture of the articular cartilage
 • Type 2 – Evidence of fracture of the articular cartilage or (3a) partial displacement of the lesion
 • Type 3 (3b/4) – Complete detachment of lesion with resulting loose body

OCD of the Capitellum

• Treatment
 • Type 1
 • No weight-bearing activities or upper extremity strengthening activities until radiographs show evidence of healing and pain resolves completely
 • Splint may be necessary for pain not relieved by rest – or to guarantee compliance
 • Type 2
 • Treatment controversial
 • Ranges from conservative to surgical intervention
 • Type 3
 • Surgical removal of loose body, curettage of fibrous and granulation tissue
 • +/- subchondral drilling, bone grafting with or without internal fixation, and periosteal transplantation
OCD of the Capitellum

- Surgical treatment depends on:
 - Location
 - Size
 - Stability of the fragment
 - Preference of the surgeon

Goal of Treatment

- Return to play to previous activity level
- Prevent the occurrence of Osteoarthritis
- Age of onset and size, progression, location, and stability of lesion
- Girls < 11y/o, boys < 13y/o – best prognosis
- > 20y/o poorer prognosis
- Prevent the occurrence of flexion contractures
- Brown et al. - 40% of pts with open arthrotomy of the elbow had 10° contracture at f/u
- Improved Outcomes with:
 - Early AROM using localized extension cast

SPONDYLOLYSIS

- Common cause of LBP in athletes
- Greatest prevalence: 10-15y/o
- Higher incidence in sports associated with periods of hyperextension
- Rate before the age of 5y/o
- Genetic predisposition: 33-50%

Exam

- Usually c/o unilateral low back pain insidious onset, without neuro c/o
- Occasional c/o buttocks pain
- Pt. may be able to pinpoint activity when pain began
- Pt. often will be in a lordotic stance
- Single leg extension test +
- TTP over affected Pars

SPONDYLOLYSIS

- Represents stress reaction/fix of the Pars Interarticularis
- Differs from other stress fix
- Develops at an earlier age
- Heals with much less callus formation
- Much more likely to form a fibrous nonunion

Imaging

- X-Ray – AP, Lateral, Oblique
 - Looking for “Scottie Dog” collar
 - 45° caudal at 1.5
 - 15° caudal at 1.4
- SPECT/CT Scan – more sensitive
- If + may go on to do CT scan
- Experts agree better chance of bony healing if NL x-rays
SPONDYLOLYSIS

- Treatment – controversial
 - Literature varies on degree, duration and indication for activity restrictions and bracing
 - Restriction of painful activity is agreed
 - Hamstring and gluteal stretching
 - Core strengthening

- Some experts argue in favor of antilordotic bracing
- Duration of activity restriction varies from 6wks to 6 months
- Some argue stage and site of fx determines healing not type of treatment
- Surgery very controversial
 - L4-L5 and Unilateral-Bilateral
 - Most clinicians will restrict activity until the pt is pain free
 - Slow gradual RTP with review of mechanics

SPONDYLOLYSIS

- Complications
 - RL spondylolyis can progress to Spondylolisthesis = slipping of one vertebra on another
 - I<25%, II<50%, III<75%, IV >75%. Best seen on Lateral.
 - Often asymptomatic, but may have LBP with or without leg pain
 - Surgery +/- for Grade II or more, progressive slip, development of neuro sx
 - Nonunion
 - Chronic LBP

- Prevention
 - Core and Flexibility training
 - Awareness of high risk sports and early Dx

DISTAL RADIAL PHYSEAL STRESS FX

- Sometimes referred to as “Gymnast wrist”
- 12-14 y/o females
- Heavy training schedules (>35hours/wk)
- Prevalence – 8-42%
- Bilateral 1/3 of the time
- Due to repetitive dorsiflexion and axial loading of the upper extremities

GYMNAST WRIST

- Exam
 - TTP over dorsal and volar radial physes
 - Painful ROM – especially in extreme active and passive dorsiflexion
 - +/- edema
 - NL strength
GYMNAST WRIST

• Imaging
 - Bi-lateral wrist radiographs
 - Widening/irregularity of the distal radial physis
 - "Beaking" of the epiphysis
 - Haziness of the physis
 - Cystic changes of the metaphyseal side of the physes

GYMNAST WRIST

• Treatment/RTP – recommendations made on Staging criteria
 - Stage 1 – clinical Dx without radiographic confirmation
 - Avoidance of axial compressive loading of the upper extremity. After 2-4 weeks, if pain free and ROM, may RTP
 - Stage 2 – Radiographic physeal widening, irregular and cystic changes of the physis, beaked distal epiphysis, and indistinct physeal appearance
 - Cast Ts may be necessary to prevent axial loading
 - May take 4-6 weeks to resolve
 - May RTP after resolution of sx

GYMNAST WRIST

• Stage 3 – late presentation
 - Has stage II radiographic changes, BUT with + ulnar variance
 - Often causes additional wrist pain due to ulnocarpal impingement
 - Must be addressed for successful Tx
 - Cast Tx may be necessary to prevent axial loading
 - May take 4-8 weeks to resolve
 - May RTP after resolution of sx

GYMNAST WRIST

• Complications
 - Ulnar positive variance sets up for:
 - Ulnocarpal impingement
 - Tear of the TFCC
 - Dysfunction of the articulation of the radius and ulna
 - Degenerative changes of the triquetrum, lunate, and ulna
 - Unclear though if loading of the ulnocarpal and radiocarpal joint causes growth acceleration of the Ulna or growth retardation of the radius

Sources

- Elite Sports Medicine. Proximal Humeral Epiphysiolysis. Web Based