

An embarrassment of riches?

Selecting, administering, and monitoring immunotherapy for lung cancer

David E. Gerber, MD

Professor, Internal Medicine and Population & Data Sciences

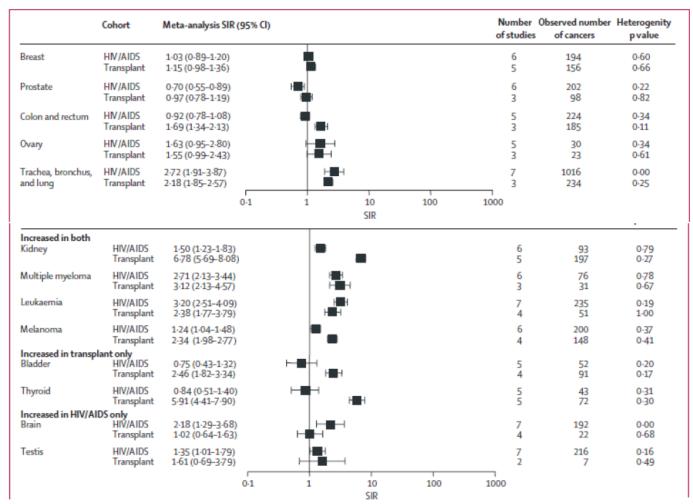
10th Annual Advances in Hematology & Oncology Fall Symposium

Green Bay, Wisconsin

April 30, 2021

UTSouthwestern

Harold C. Simmons Comprehensive Cancer Center

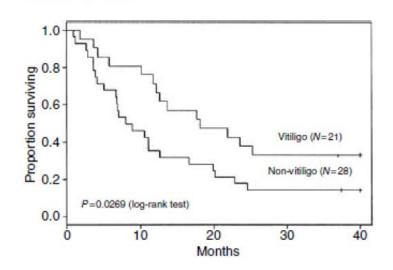

Disclosures

- Research funding: Astra-Zeneca, BerGenBio, Karyopharm, Regeneron
- Stock ownership: Gilead
- Consulting/Advisory Boards: Adjuvant Genomics, BioGene, Catalyst Pharmaceuticals, G1 Therapeutics, Janssen, Sanofi

Outline

- Rationale for and history of employing the immune system against cancer
- An overview of immune checkpoint inhibitors
- Selecting patients for immunotherapy
- The role of immunotherapy in the treatment of lung cancer
- Immune-related adverse events

Immune suppression increases cancer risk



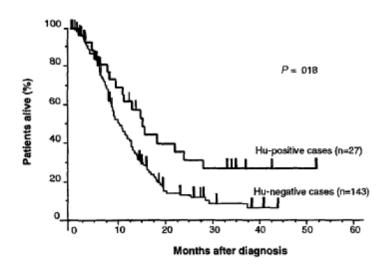
Non-infection-associated cancers

Grulich AE et al. Lancet 2007;370:59-67.

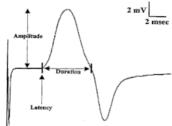
Enhanced immunity improves cancer outcomes

The development of vitiligo improves survival in metastatic melanoma

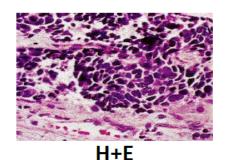
melanoma

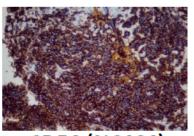


vitiligo

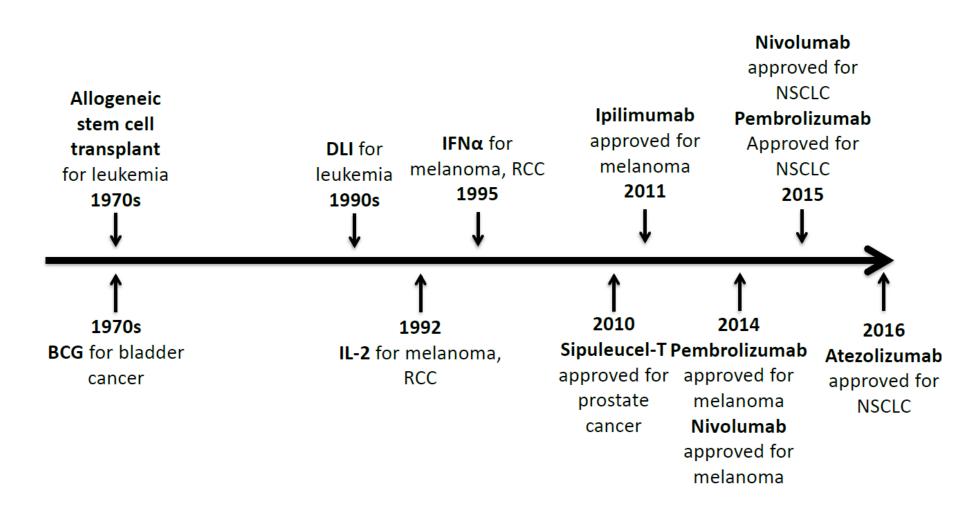

Boasberg PD. *J Invest Derm* 2006;2658-2663. Hawryluk EB. *Pediatr Clin N Amer* 2014;61:279-291. Silvergerg NB. *Pediatr Clin N Amer* 2014;61:347-366.

Enhanced immunity improves cancer outcomes

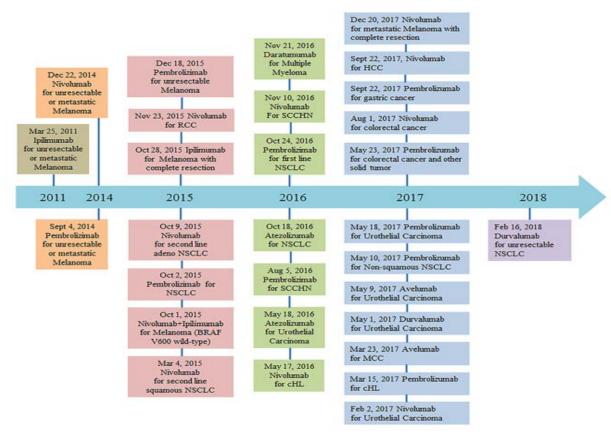

SCLC patients with paraneoplastic peripheral neuropathy live longer than those without it



Nerve conduction study to assess sensory changes

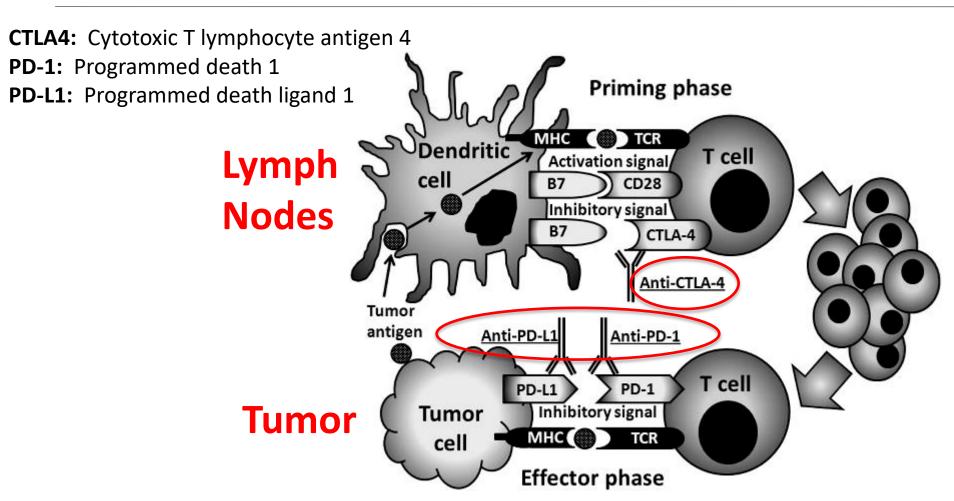


CD56 (NCAM)


Small cell lung cancer pathologic features

Grauss F et al. J Clin Oncol 1997;15:2866-2872...

Immunotherapy has been a component of cancer treatment for decades



In recent years, the number and uses of immune checkpoint inhibitors has grown rapidly

Zhang J et al. Front Oncol 2018;8:351.

Checkpoint inhibitors represent the mainstay of lung cancer immunotherapy

Fumito, Chang. Surg Oncol Clin N Amer 2013;22:765-783

These drugs have far more similarities than they do differences

Efficacy? Toxicity?

Half-life?
Infusion reactions? ADCC?

Target	Company	Drug ID	Generic name	Brand name	Species	Isotype
PD-1	Bristol-Myers Squibb	BMS-936558/MDX-1106	Nivolumab	Opdivo	Fully human	lgG4
PD-1	Merck	MK-3475	Pembrolizumab	Keytruda	Humanized	IgG4
PD-1	CureTech	CT-011	Pidilizumab		Humanized	lgG1
PD-L1	Genentech / Roche	MPDL3280A	Atezolizumab	Tecentriq	Humanized	lgG1
PD-L1	MedImmune / Astra-Zeneca	MEDI4736	Durvalumab	Imfimzi	Fully human	lgG1
PD-L1	Merck KGaA	MSB0010718C	Avelumab	Bavencio	Fully human	lgG1
PD-L1	Bristol-Myers Squibb	BMS-936559/MDX-1105			Fully human	IgG4

... similar to other medical treatments

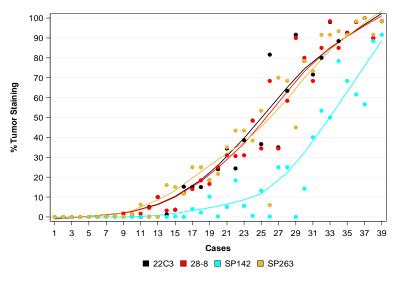
Statins Simvastatin Pravastatin Atorvastatin Rosuvastatin

Fluvastatin

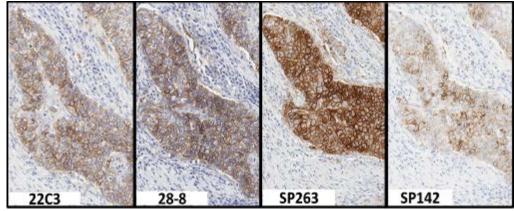
ACE inhibitors
Quinapril
Benazepril
Perindopril
Captopril
Moexipril
Enalapril
Lisinopril
Fosinopril

For non-small cell lung cancer, most immunotherapy use does not require PD-L1 testing*

Indication	Required?	Result needed						
Early-Stage (stages II-III) NSCLC								
Adjuvant atezolizumab	Υ	PD-L1 ≥1%						
Locally Advanced (st	age III) NSCLO	3						
Consolidation Durvalumab	N							
Advanced (stage	IV) NSCLC							
1L Pembrolizumab	Υ	TPS ≥1% (was ≥50%)						
1L Cemiplimab	Υ	PD-L1 ≥1%						
1L Carbo-Pem + Pembrolizumab	N							
1L Carbo-Paclitaxel + Bev + Atezolizumab	N							
1L Ipilimumab + Nivolumab	Υ	PD-L1 ≥1%						
1L Ipilimumab + Nivolumab + Chemo	N							
2L Nivolumab	N							
2L Atezolizumab	N							
2L Pembrolizumab	Υ	TPS ≥1%						


Different diagnostic antibodies, cut-points, tumor/immune cell evaluation, and platforms complicate PD-L1 assessment

Immune checkpoint inhibitors and matching PD-L1 assay


Drug	Drug Target	PD-L1 IHC assay	PD-L1 antibody Epitope	Auto stainer	Detection system	
Nivolumab	PD1	28-8	Extracellular	Dako Link 48	Envision Flex	
Pembrolizumab	PD1	22C3	Extracellular	Dako Lifik 48	Elivision Flex	
Atezolizumab	PD-L1	SP142	Cytoplasmic	Ventana	Optiview + Amplification	
Durvalumab	PD-L1	SP263	Cytoplasmic	Benchmark	Optiview	
Avelumab	PD-L1	73-10	Cytoplasmic	Dako	Envision Flex	

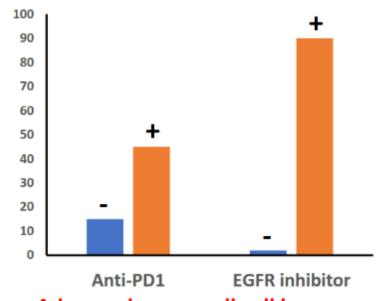
Assesses TC and IC

Fortunately, there is reasonable concordance for PD-L1 staining on tumor cells*

Each dot represents mean score of 3 pathologists

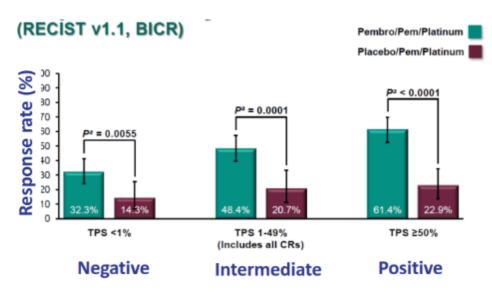
Conclusion: 3 assays showed similar staining characteristics for PD-L1 staining on tumor cells, but SP142 (atezolizumab companion diagnostic) comparatively showed less tumor cells stained

Hirsch FR et al. J Thorac Oncol 2017;12:208-222.

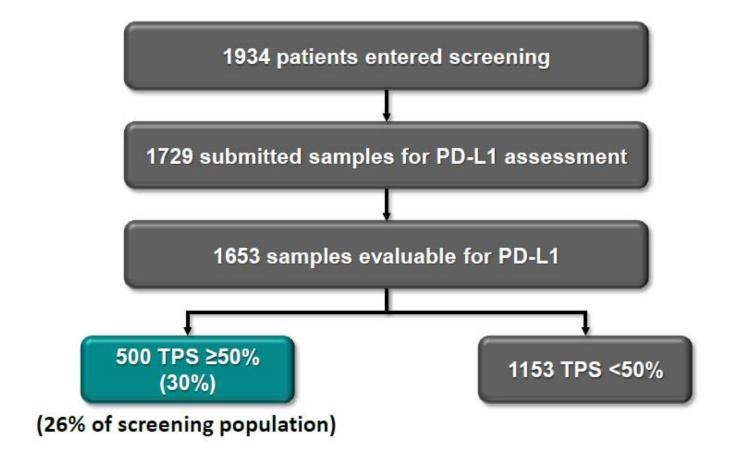

Courtesy of Fred Hirsch, MD PhD

*But more variability for immune cell staining

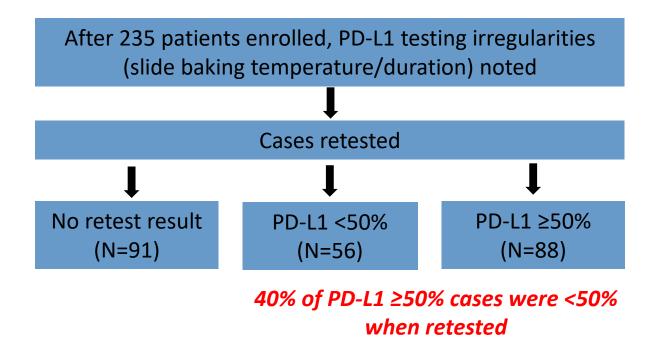
In lung cancer, clinical context limits the predictive capacity of PD-L1


Biomarkers for other therapies may be far more informative

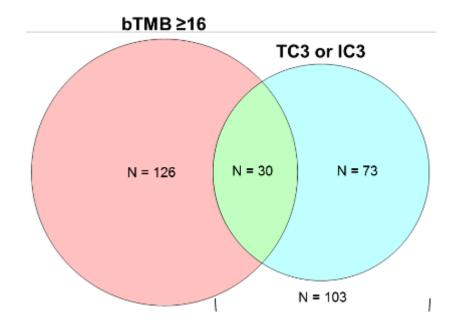
Response rate (%)


Advanced non-small cell lung cancer

Adding anti-PD1 immunotherapy to chemotherapy improves outcomes regardless of PDL1 expression


Gandhi L. AACR 2016

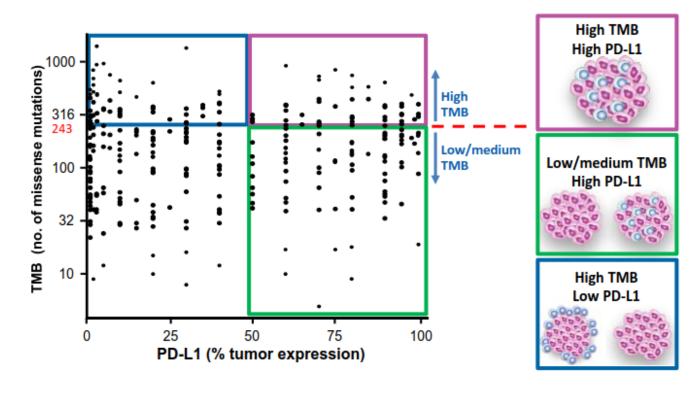
Determining PDL1 status up-front may be challenging


KEYNOTE-024. Presented by Martin Reck, MD. ESMO 2016.

Staying humble: biomarker results reflect technical considerations as well as tumor biology

EMPOWER-Lung trial of Cemiplimab in PD-L1 ≥50% (N=710)

Perhaps surprisingly, there is not a clear association between tumor mutational burden and PD-L1 expression



- Non-significant overlap between the bTMB ≥16 and TC3 or IC3 subgroups (Fisher exact test, P = 0.62)
 - 19.2% of tumors with bTMB ≥16 were also TC3 or IC3
 - 29.1% of tumors with TC3 or IC3 also had bTMB ≥16

Hellman MD et al. Cancer Cell 2018;33:1-9.

a PD-L1 expression was evaluated by immunohistochemistry (IHC) using the VENTANA SP142 assay;
 TC3 or IC3, ≥50% of TC or ≥10% of IC express PD-L1.
 BEP, biomarker-evaluable population; IC, tumor-infiltrating immune cell; TC, tumor cell.

Perhaps surprisingly, there is not a clear association between tumor mutational burden and PD-L1 expression

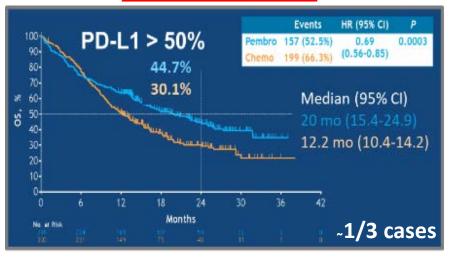
Hypotheses

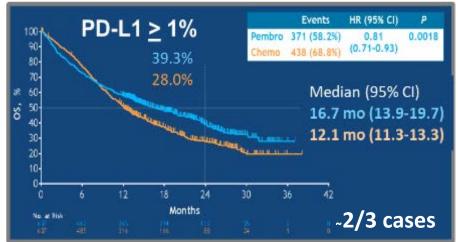
PD-L1 may be a surrogate marker of high TMB-induced inflammation (T cell infiltration and IFN-γ-associated activation)

TMB may not be the only driver of inflammation, and alternate pathways (e.g., quality neoantigens and strong immunogenicity) may lead to PD-L1 upregulation

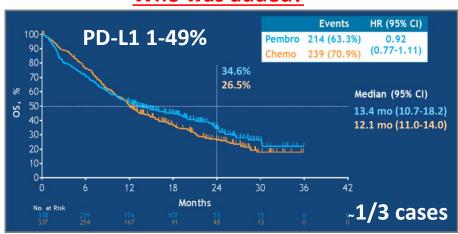
Tumors may have T cells excluded, preventing inflammation with lack of PD-L1 upregulation

Peters S et al. Oral presentation at AACR 2017. CT082.


There are too many lung cancer immunotherapy trials to keep track of

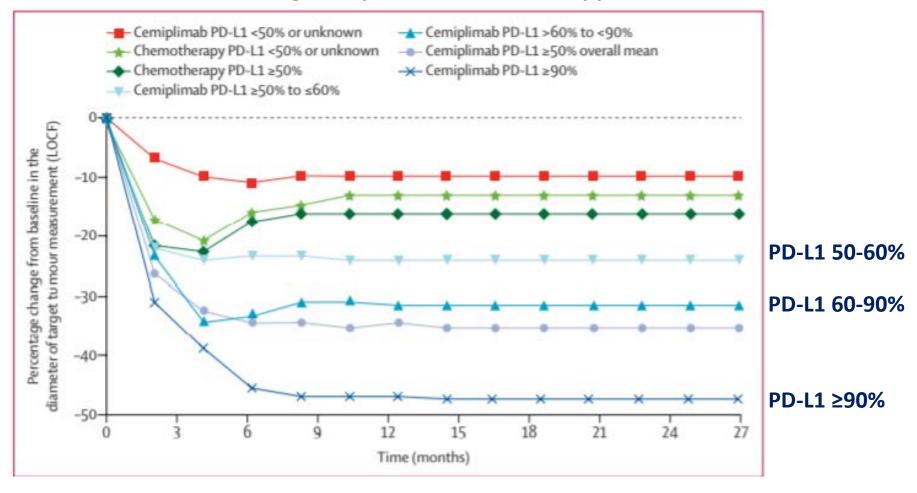

Trial title	Drug
Trees (Oak, Poplar) or IMpower	Atezolizumab
EMPOWER	Cemiplimab
Bodies of water (Mystic, Adriatic, Atlantic, Pacific)	Durvalumab
CheckMate	Nivolumab
KEYNOTE	Pembrolizumab

Eliminating chemotherapy: 1L IO monotherapy → still best used in PDL1 high cases?

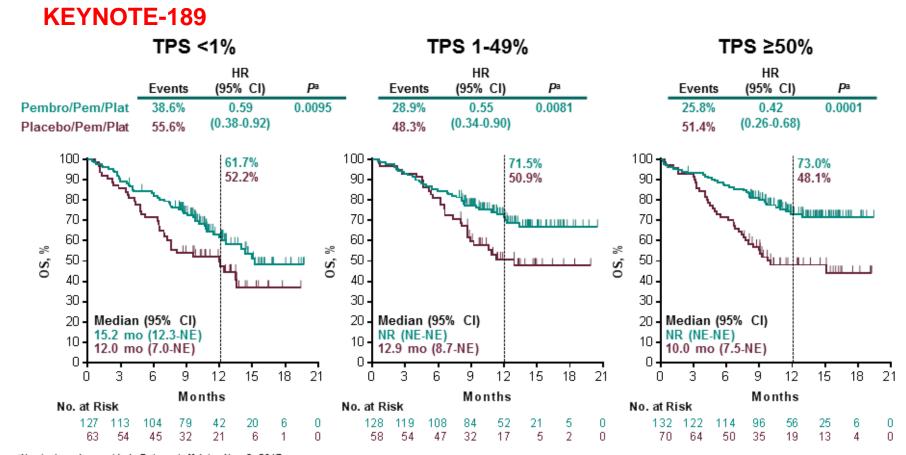

Initial FDA approval

Subsequent FDA approval

Who was added?

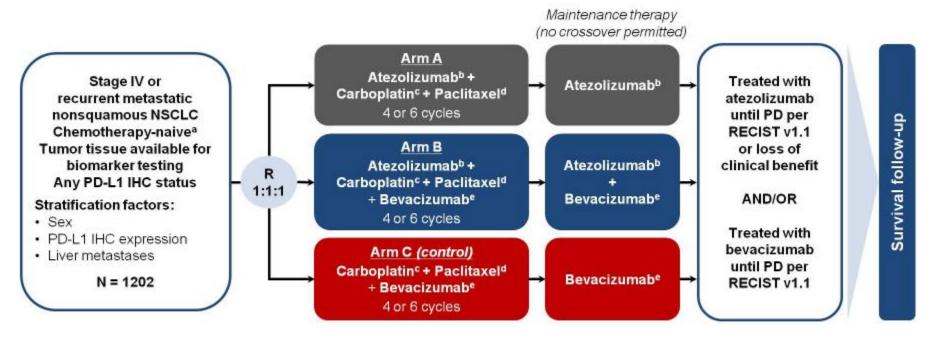


If IO same as chemotherapy, then presumably not as good as chemo + IO


KEYNOTE 042. Lopes G, et al. ASCO 2018. Abstract LBA4.

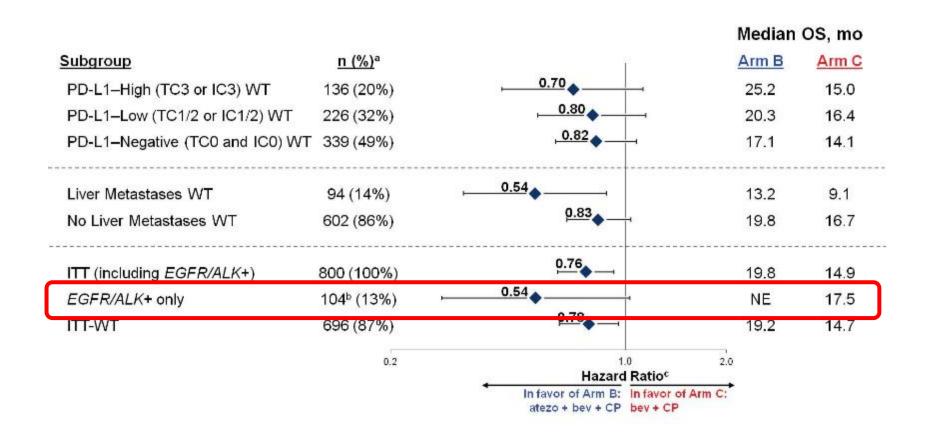
Within the high PD-L1 stratum, PD-L1 expression level may influence outcomes

EMPOWER Lung: cemiplimab vs chemotherapy in PD-L1 ≥50%

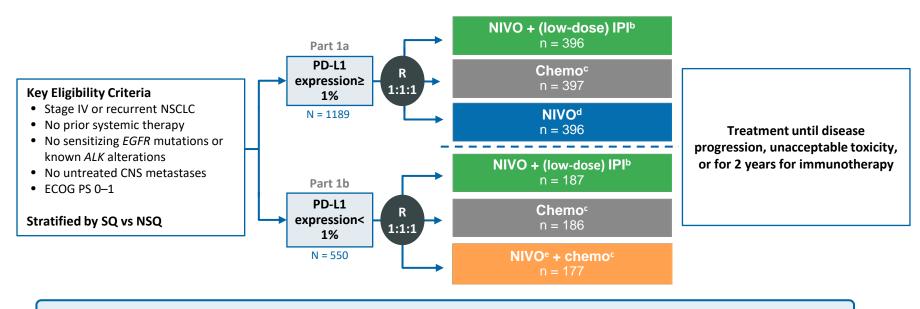

In PD-L1 <50%, combination with chemotherapy frequently preferred

aNominal and one-sided. Data cutoffdate: Nov 8, 2017.

Atezolizumab combinations did not exclude "targeted therapy" populations . . .


IMpower 150

Patients with a sensitizing EGFR mutation or ALK translocation must have disease progression or intolerance of treatment with one or more approved targeted therapies.


Atezolizumab: 1200 mg IV q3w. ° Carboplatin: AUC 6 IV q3w. ° Paclitaxel: 200 mg/m² IV q3w. ° Bevacizumab: 15 mg/kg IV q3w.

... in which they seemed effective

Combination immunotherapy has also been approved for advanced NSCLC

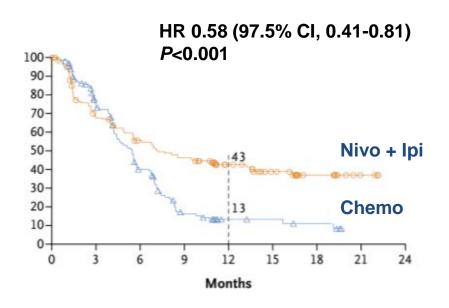
CheckMate 227 Part 1 Study Designa

Independent co-primary endpoints: NIVO + IPI vs chemo

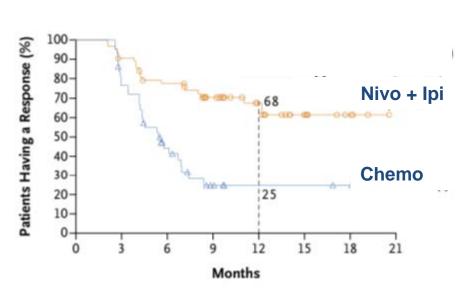
- PFS in high TMB (≥10 mut/Mb) population^f
- OS in PD-L1 ≥ 1% population^g

Secondary endpoints (PD-L1 hierarchy):

- PFS: NIVO + chemo vs chemo in PD-L1 < 1%
- OS: NIVO + chemo vs chemo in PD-L1 < 1%
- OS: NIVO vs chemo in PD-L1 ≥ 50%

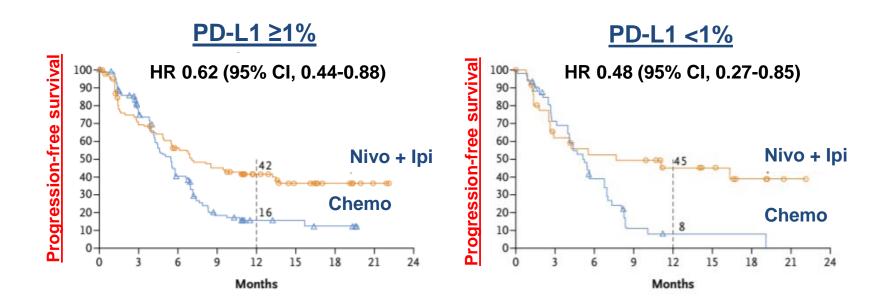

S. Peters, ESMO 2019; Database lock: July 2, 2019; minimum follow-up for primary endpoint: 29.3 months

Courtesy of Hossein Borghaei, MD



This combination appears particularly beneficial in high tumor mutation burden (TMB) cases . . .

Progression-free survival



Duration of response

High Tumor Mutation Burden (TMB): ≥10 mutations/Mb

... regardless of PD-L1 expression

High Tumor Mutation Burden (TMB): ≥10 mutations/Mb

Selecting among these recently approved combination regimens: clear as mud

PD1 + Chemo

PD1 + CTLA4

PD1 + CTLA4 + Chemo

	Keynote 189 (PD-L1 ≥1%)	Keynote 189 (PD-L1 <1%)	CheckMate 227 (PD-L1 ≥1%)	CheckMate 227 (PD-L1 <1%)	CheckMate 9LA (PD-L1 ≥1%)	CheckMate 9LA (PD-L1 <1%)
Follow-up	23.1 months (median)	23.1 months (median)	37.7 months	37.7 months	12.7 months	12.7 months
Median OS (Months)	23.3 vs 11.3	17.2 vs 10.2	17.1 vs. 14.9	17.2 vs. 12.2	15.8 vs 10.9	16.8 vs 9.8
OS (HR)	0.61	0.52	0.70	0.64	0.64	0.62
1y OS (%)	70	63.4	63	60	66	63
2y OS (%)	45.5	38.5	40	40		

How does a world-class expert in lung cancer (not me) recommend using immunotherapy regimens?

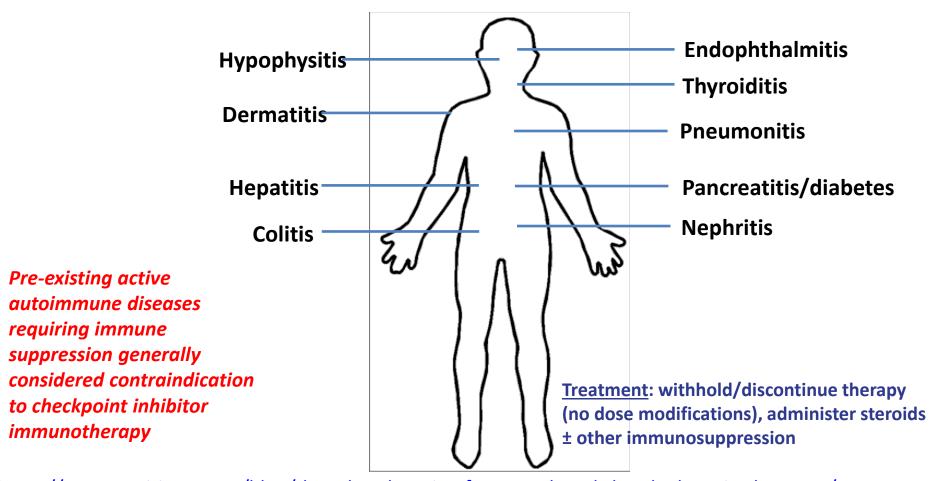
<u>Tx Cohort</u>	<u>Non-Squamous</u>	<u>Squamous</u>		
PDL1 ≥ 50%	Pembro > Pem/Carbo/Pembro	Pembro > Taxane/Carbo/Pembro		
PDL1 1-50%	Pem/Carbo/Pembro > Pembro	Taxane/Carbo/Pembro > Pembro		
PDL1 < 1%	Pem/Carbo/Pembro	Taxane/Carbo/Pembro		
PDL1 < 1%, TMB > 10	Pem/Carbo/Pembro vs Ipi/Nivo*	Taxane/Carbo/Pembro vs Ipi/Nivo*		
TKI-Refractory**	Pac/Carbo/Bev/Ate	ezo or Pem/Carbo ± Bev		
Tissue QNS Pem/Carbo/Pembro		Taxane/Carbo/Pembro		

^{*}Ipilimumab/Nivolumab ± 2 cycles of histology-appropriate chemotherapy (9LA)

^{**}Bevacizumab-containing regimens may also have role if effusions or edema from brain mets

Corey J. Langer, MD, FACP
Director, Thoracic Oncology
Abramson Comprehensive Cancer Center
University of Pennsylvania
Philadelphia, PA

Regardless of IO regimen, immune-related adverse events are largely unpredictable and potentially severe


Pneumonitis after 3 doses

Antiphospholipid syndrome after 4 doses

Immune-related adverse events may affect almost any organ system

Immune-related adverse events (irAE) may affect almost any organ system

https://www.appitierre.com/blog/the-adapt-learning-framework-and-the-elephant-in-the-room/

Autoimmune disease occurs in a substantial minority of patients with cancer, and may be challenging to diagnose

RESEARCH LETTER

Prevalence of Autoimmune Disease Among Patients With Lung Cancer: Implications for Immunotherapy Treatment Options

Saad A. Khan, MD Sandi L. Pruitt, PhD Lei Xuan, PhD David E. Gerber, MD

Cancer treatment untested in many patients with immune problems

The Reason Millions Of Cancer Patients Are Excluded From Immunotherapy

Updated Hot Tags NASA Mars space Cancer Apple

SCIENCE WORLD REPORT Sciencewr.com

Almost 25 Percent Of Cancer Patients Are Ineligible For Immunotherapy, Researchers Say

Khan SA et al. *JAMA Oncol* 2016;2:1507-1508.

Autoimmune disease occurs in a substantial minority of patients with cancer, and may be challenging to diagnose

Patient Characteristics	All Patients, No.	With Autoimmune Disease, No. (%)	P Value*
Total	210 509	28 453 (13.5)	
Age			
<75	94804	11 664 (12.3)	<.001
≥75 to <85	92 045	13 529 (14.7)	<.001
≥85	23 660	3260 (13.8)	<.001
Sex			
Female	97 494	16 374 (16.8)	<.001
Male	113 015	12 079 (10.7)	<.001
Stage (AJCC)			
	36 152	6331 (17.5)	<.001
II	6758	1028 (15.2)	<.001
III	51 542	6692 (13)	<.001
IV	77 833	9302 (12)	<.001
Other	38 224	5100 (13.3)	<.001

Table 2. Prevalence of the 10 Most Common Individual Autoimmune
Diseases Among 210 509 Patients With Lung Cancer

Autoimmune Disease	Prevalence, %	
Rheumatoid arthritis	5.9	
Psoriasis	2.8	
Polymyalgia rheumatic	1.8	
Addison disease	1.0	
Systemic lupus erythematosus	0.9	
Ulcerative colitis	0.8	
Giant cell arteritis	0.8	
Sicca syndrome	0.6	
Regional enteritis	0.5	
Ménière disease, unspecified	0.5	
Total (any autoimmune disease)	13.5	

<u>Estimated prevalence</u>:

- 13.5% (claims "rule-out" method: ≥2 outpt claims ≥30 days apart or ≥1 inpt claim)
- 24.6% (more liberal method: ≥1 claim of any type)

If autoimmune disease is difficult to diagnose, what about diagnosing immune-related adverse events?

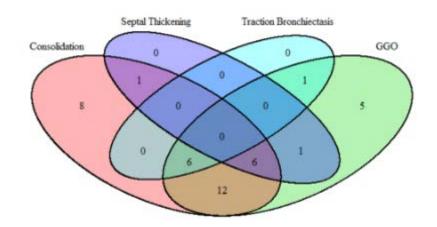
Khan SA et al. JAMA Oncol 2016;2:1507-1508.

Remember that most chemotherapy toxicities are readily diagnosed and characterized

_	-	Ref. Range	1/24/2019 1022	`		
-	CK, TOTAL	Latest Ref Range: 39 - 308 U/L	24 🐷	1 SMS	`	
	D	Latest Ref Range: 135 - 225 U/L	499 ^	\		
S	ODIUM	Latest Ref Range: 135 - 145 mmol/L	139 *	UTSW01	1-06 Delayed	
	POTASSIUM	Latest Ref Range: 3.6 - 5.0 mmol/L	4.1 *	1 311,000		
C	CHLORIDE	Latest Ref Range: 98 - 109 mmol/L	104*	100)/- Delayed	
C	:02	Latest Ref Range: 22 - 31 mmol/L	19*-	00.2	, - ,	
A	INION GAP	Latest Ref Range: 6 - 16 mmol/L	16 *			
G	LUCOSE	Latest Ref Range: 70 - 139 mg/dL	243 * 🕈			
В	UN	Latest Ref Range: 6 - 23 mg/dL	29 * *	1		
C	REATININE	Latest Ref Range: 0.67 - 1.17 mg/dL	1.08 *			
e	GFR African American	Latest Ref Range: >60 mL/min/1.73 m2	>60 *	1		
e	GFR Non-African American	Latest Ref Range: >60 mL/min/1.73 m2	>60 *	1		
В	UN/CREAT RATIO	Latest Ref Range: 10.0 - 20.0 mg/mg creat	26.9 * *	1		
C.	ALCIUM	Latest Ref Range: 8.4 - 10.2 mg/dL	9.5 *	1		
P	rotein Total	Latest Ref Range: 6.6 - 8.7 g/dL	6.3 * 🐷			
A	LBUMIN	Latest Ref Range: 3.5 - 5.2 g/dL	3.1 - 0	(6)		
A	LK PHOS	Latest Ref Range: 40 - 129 U/L	462 * 4	62		
B	ILIRUBIN, TOTAL	Latest Ref Range: 0.2 - 1.3 mg/dL	0.5*)		
G	LOBULIN	Latest Ref Range: 1.5 - 3.3 g/dL	3.2 * 1.0 *	1		
A	G RATIO	Unknown	1.0 *	1		
М	IAGNESIUM	Latest Ref Range: 1.6 - 2.6 mg/dl	1.7	1		
Pi	HOSPHORUS	Latest Ref Range: 2.4 - 4.5 mg/dL	3.4	1		
U	RIC ACID	Latest Ref Range: 3.4 - 7.0 mg/dL	7.9 A	s'		
Al	LŤ	Latest Ref Range: 10 - 50 U/L		161		
Al	MYLASE	Latest Ref Range: 28 - 100 U/L	92),		
A	ST	Latest Ref Range: 10 - 50 U/L	46 *	\		
L	IPASE	Latest Ref Range: 7 - 59 U/L	15	\		
PI	ROTIME	Latest Ref Range: 9.5 - 12.8 Sec	11.9	1		
IN	IR	Latest Ref Range: 0.9 - 1.3	1.2 *	/		Thrombocytopenia:
P	π	Latest Ref Range: 23.0 - 32.5 Seconds	33.7 📤	/	.	····o····bocy topeina.
W	/BC	Latest Ref Range: 4.00 - 11.00 x10(9)/L	9.35	1	DIWNG	 Quantified by lab
RE	BC	Latest Ref Range: 4.00 - 5.80 x10(12)/L	3.25 🕌	2	L. C	Qualitatica by lab
H	EMOGLOBIN	Latest Ref Range: 12.4 - 17.3 g/dL	9.1 - 9	6.3		value
HE		Latest Ref Range: 37.0 - 50.0 %	28.0 -	•	2/1/19	value
M	cv	Latest Ref Range: 80.0 - 98.0 fL	86.2	1	1/19	 No other likely cause
M	СН	Latest Ref Range: 27.0 - 33.0 pg	28.0			ind other likely cause
M		Latest Ref Range: 33.0 - 35.0 g/dL	32.5 🕶			
RL	DVV ·	Latest Rei Range, 11.3 - 15.1 %	20.8	20		
PL	LATELETS	Latest Ref Range: 150 - 450 x10(9)/L	55 - a	63 63	V	
-	PV	Latest Net Range, 0.5 11.5 fz	10.0	Held IX		
	RBC	Latest Ref Range: <=0.0 %	0.9		1	
NE	RBC ABS	Latest Ref Range: <=0.00 x10(9)/L	0.08		1	

Chemotherapy toxicities are also relatively easy to predict

1 CHEMO Inf. Rvn. Acute N/V Tissue inj.	2 Acute N/V	3 Delayed N/V	4 Delayed N/V	5 Delayed N/V	6 Delayed N/V	7 Delayed N/V
8	9	10 Count nadir	11 Count nadir	12 Count nadir	13 Count nadir	14 Count nadir
15 Count nadir	16	17	18	19	20	21
22 CHEMO	23 Alopecia this cycle	24	25	26	27	28
29	30	31				


Clear differences between trial reports and institutional experiences suggest otherwise for immune-related AE

CheckMate 057: 4% pneumonitis

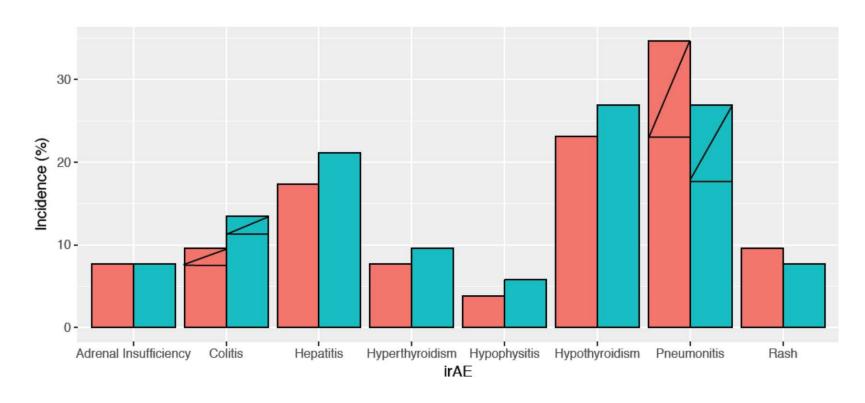
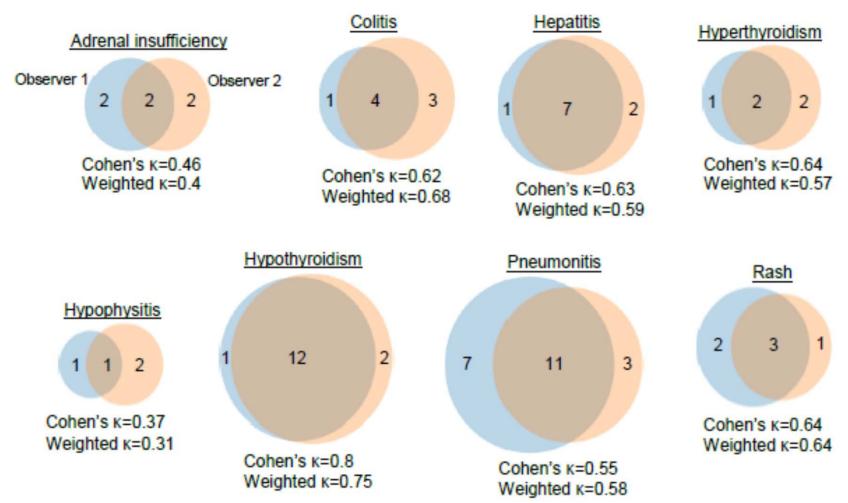

Johns Hopkins: 19% pneumonitis

Table 1. Baseline Characteristic	s		
Characteristic	CIP $(n = 39)$	No CIP (n = 166)	All Patients (N = 205)

Select adverse event category		Nivolumab n = 287	
	Any Grade	Grade 3-4	
Pulmonary			
Pneumonitis	8 (3)	3 (1)	
Interstitial lung disease	2 (1)	1 (<1)	

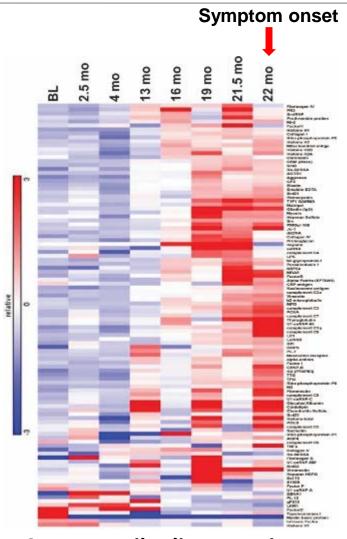

Rates of immune-related AE varied between reviewers and generally exceeded those reported in clinical trials

Neither reviewer consistently identified more/fewer toxicities than the other reviewer

Hsieh D et al. JAMA Network Open 2019.

Inter-observer agreement was poor (κ <0.7) for all immune-related AE except hypothyroidism

Agreement on immune-related AE grading similarly limited (weighted κ 0.31-0.75)
Hsieh D et al. JAMA Network Open 2019


UT Southwestern
Heiski C.Siminione
Comprehensive Canon Center

The unpredictable timing of immune-related adverse events also keeps us on our toes

New-onset Raynaud's phenomenon 22 months after anti-PD1 + anti-CTLA4 started

125 autoantibodies over time

Khan S et al. Oncologist 2020.

Conclusions

- There is a strong rationale to harness the immune system for cancer treatment
- Despite decades of efforts, only recently have we seen meaningful progress, in the form of immune checkpoint inhibitors (ICI)
- Differences between various anti-PD1 / PDL1 inhibitors appear to be negligible
- Tumor PD-L1 expression is a useful but clearly imperfect biomarker
- Most lung cancer ICI indications do not require PD-L1 results
- Selecting among the various ICI-containing regimens in advanced NSCLC is difficult and lacks high-level evidence to support the decision
- Factors that may influence selection of regimens: (a) PD-L1 availability, (b) PD-L1 results,
 (c) functional status, (d) EGFR/ALK status, (e) tumor burden, (f) effusions/brain mets, (g)
 tolerance for autoimmune toxicities
- Immune-related adverse events (irAE) remain largely unpredictable, potentially severe, and difficult to diagnose

Funding/Acknowledgements

The David M. Crowley Foundation

Peter Bradley Carlson Trust

132330-MRAT-18-114-01-LIB

5 P30 CA142543 supplement P50-CA070907 CEA K24CA201543-01

DT2019-007

1U01AI156189-01

