

Renal Cell Carcinoma: Sequencing Therapy in 2022

Nancy B. Davis, MD
Associate Professor of Medicine & Urology
Kathleen Jackson Johnstone Director
Vanderbilt-Ingram Cancer Center

Disclosures

Research Funding to Institution:

 AstraZeneca, Roche, Pfizer, Merck, Incyte, Mirati Therapeutics, Seattle Genetics, Gilead, Exelixis, Bristol-Myers Squibb, Immunomedics, Calithera Biosciences

Consulting:

Janssen

Outline

- Background
- Adjuvant Setting
- Metastatic Setting
- Future Study
- Conclusions

Background: Renal Cell Cancer

- ~ 3% of all malignant tumors
- 5th-7th decades of life
- Incidence is rising
 - 79k estimated new cases 2022¹
 - 39k estimated new cases 2006²
- 25-50% are metastatic at diagnosis

Histological Classification of Human Renal Epithelial Neoplasms

Adjuvant Setting

Adjuvant Therapy: Ideal Setting

- Why?
 - High recurrence rates

• Who?

High risk features

Intermediate-High Risk		High Risk		M1 NED
pT2	pT3	pT4	Any pT	NED -4
Grade 4 or sarcomatoid	Any grade	Any grade	Any grade	NED after resection of oligometastatic
N0	N0	N0	N+	sites ≤1 year from
M0	M0	M0	M0	nephrectomy
5yr Risk of Recurrence				
31%	47%	54%	63%	?70%

https://cancernomograms.com/nomograms

Adjuvant Therapy for RCC

How/What?

Appropriate drug

- active on micrometastases
- low toxicity
- Clinically meaningful outcomes

So is that

- "old immunotherapy"?
- VEGF-TKI or mTOR??
- "modern" immunotherapy?

Study	N	Arms	1° Endpoint
Clark, et.al.	69	IL-2 vs obs	DFS
Pizzocaro, et. al.	247	IFN-α2b vs obs	OS, EFS
ASSURE	1943	1 yr sorafenib vs sunitinib vs PBO	DFS
PROTECT	1538	1 yr pazopanib vs PBO	DFS
ATLAS	724	3 yr axitinib vs PBO	DFS
SORCE	1711	3 rs sorafenib vs PBO	DFS
EVEREST	1218	54 weeks of everolimus vs PBO	DFS
S-TRAC	615	1 yr sunitinib vs PBO	DFS
PROSPER	805	Neo- & Adj nivolumab	RFS
IMmotion010	778	1 yr atezolizumab vs PBO	DFS
CheckMate914	1600	24 wks ipi/nivo vs PBO	DFS
KEYNOTE-564	950	51 wks pembrolizumab vs PBO	DFS

S-TRAC: Adjuvant Sunitinib

- Phase 3 RCT, double-blind
 - 1yr of sunitinib vs PBO
- N=615 (309 vs 305)
- 1º endpoint: DFS (central)
 - 2° endpoints: DFS (invest), OS, AE
- High-risk:
 - pT3, N0/x, M0 [91%]
 - Low risk 1/3
 - pT4, N0/x, M0 [1%]
 - pTany, N+, N0 [8%]

S-TRAC: Adjuvant Sunitinib

- Phase 3 RCT
 - 1yr of sunitinib vs PBO
- N=615 (309 vs 305)
- 1° endpoint: DFS (central)
 - 2° endpoints: DFS (invest), OS, AE
- High-risk:
 - pT3, N0/x, M0 [91%]
 - Low risk ~40%
 - pT4, N0/x, M0 [1%]
 - pTany, N+, N0 [8%]

Keynote-564: Adjuvant Pembrolizumab

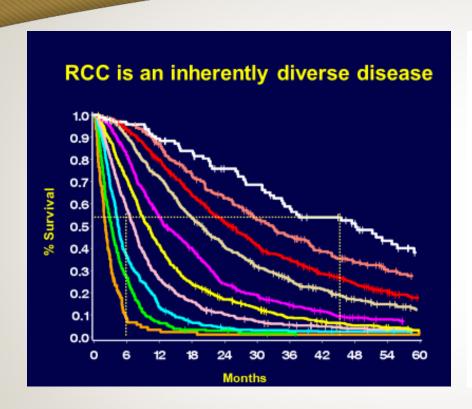
- Phase 3 RCT, double-blind
 - 51 wks pembro vs PBO
- N= 994 (496 vs 498)
- 1° endpoint: DFS (invest)
 - 2° endpoints: OS, AE
- High-risk:
 - pT3, N0/x, M0 [86%]
 - Low risk 1/3
 - pT4, N0/x, M0 [8%]
 - pTany, N+, N0 [6%]

Keynote-564: By Risk Group

Adjuvant Therapy: TKI or ICI?

Outcome	S-Trac	Keynote-564
mDFS	6.8 yrs	NR
2 yr DFS	~71%	78%
3 yr DFS	65%	71%
mOS	NR	NR
Gr3/4 tox	63.4%	32%

S-TRAC: Ravaud, et. al., NEJM 2016 Keynote-564: Choueiri, et. al. NEJM 2021


KEYNOTE-564

MEDICAL CENTER

Natural Hx mRCC

No.	1 Year	2 Years	5 Years
409	33	3	0.5
141	10	-	0
40	42	17	4
77	_	_	8
93	26	_	
65	22	9	0
64	12	_	3
78	18	_	_
86	43	21	10
42	1 <i>7</i>	_	2
15	< 50	_	8
56	_	_	14
<i>7</i> 1	_	_	< 5
20	_	20	13
53	-	_	18
88		_	2
32	21	3	_
158	-	15	_
50	-	-	7
	409 141 40 77 93 65 64 78 86 42 15 56 71 20 53 88 32 158	409 33 141 10 40 42 77 - 93 26 65 22 64 12 78 18 86 43 42 17 15 < 50 56 - 71 - 20 - 53 - 88 - 32 21 158 -	409 33 3 141 10 - 40 42 17 77 - - 93 26 - 65 22 9 64 12 - 78 18 - 86 43 21 42 17 - 15 < 50

mRCC Treatment Options

- Cytoreductive Nephrectomy?
- Metastectomy?
- TKI?
- 10/10?
- IO/TKI?
- Other?

Cytoreductive Nephrectomy

- Is it Required?
 - Controversial with conflicting data
 - Original study with IFN showed benefit
 - CARMENA was an OS (-) trial
 - SURTIME was a PFS (-) trial
 - OS (+) only if NAC TKI
 - NCDB meta-analysis OS (+) trial
 - Does the drug class matter?
 - TKI vs ICI?

Overall Survival for CN by Drug Class

Treatment	2yr CN+	2 yr CN -	HR (95% CI)
TT	54.1%	25.8%	0.56 (0.51-0.62)
ICI	69.1%	41.4%	0.39 (0.19-0.83)

CN: When to consider

- (When) Should it be done?
 - Conflicting data
- "Best" guesses
 - Upfront:
 - For absolute indications
 - (minimal) lung mets only
 - (Consider if) asymptomatic from mets
 - Delayed:
 - Bone mets
 - Symptomatic from mets
 - IDMC int/poor

What About Metastasectomy?

- Not a "new" concept
 - 1st case 1939*
- 5 yr OS following mRCC metastasectomy is 35-50%
- Retrospective review n=278, 1st relapse (MSKCC)
 - 141 "curative metastasectomy"
 - 70 "non-curative surgery"
 - 67 "non-surgical therapy"

What About Metastasectomy?

- Prognostic Variables for OS
 - DFS > 12 months
 - Solitary metastatic site*
 - Curative metastasectomy
 - Age < 60yrs</p>
- Other 5-yr OS observations:
 - Lung > brain (54 vs 18%)

Treatment: TKI?

- Between 2005 and 2016, 8 TKIs approved
- Monotherapy was most common

Single Agent Immunotherapy

> IL-2 IFN-α2b

Nivolumab

Single Agent Angiogenesis Inhibitors

Sorafenib
Sunitinib
Pazopanib
Axitinib
Bevacizumab
Cabozantinib

Single agent mTOR Inhibitors

Temsirolimus Everolimus Combination Therapies

Bevacizumab + IFN

Treatment: TKI?

IMDC Prognostic Criteria

Clinical

- KPS < 80%
- Time from diagnosis to treatment < 1 year

Laboratory

- Hemoglobin < LLN
- Calcium > ULN
- Neutrophil count > ULN
- Platelet count > ULN

IDMC Risk Group		Overall Survival (TKI Era)	
Favorable (0 Risk Factors)		3-4 yrs	
Intermediate (1-2 Risk Factors)		27 months	
Poor (≥ 3 Risk Factors)		8.8 months	

Heng DYC, et al. J Clin Oncol. 2009;27:5794-5799.

Favorable

Intermediate

Treatment: 10?

VANDERBILT V UNI 2 nd Line Nivolumab Monotherapy: Checkmate 025

Inclusion Criteria

- mccRCC
- 2 prior antiangiogenic regimens
- ≤ 3 total regimens
- No CNS mets
- No prior mTOR

1:1 Randomization

Nivolumab 3 mg/kg IV q 2wks

Everolimus 10 mg po q day

- Primary Endpoint: OS
- Secondary: ORR, PFS, OS by PD-L1 status, iAE
 - Stratified for:

 MSKCC risk group

 1 vs 2 prior

 antiangiogenics

Everolimus monotherapy

WANDERBILT OUNIVERSITY ON Therapy now SOC in mRCC

Single Agent Immunotherapy

IL-2 IFN-α2b

Nivolumab

Single Agent Angiogenesis Inhibitors

Sorafenib
Sunitinib
Pazopanib
Axitinib
Bevacizumab
Cabozantinib

Single agent mTOR Inhibitors

Temsirolimus Everolimus

Combination Therapies

Bevacizumab + IFN

Lenvatinib + Everolimus

Nivolumab + Ipililumab

Pembrolizumab + Axitinib

Avelumab + Axitinib

Pembolizumab + Lenvatinib

Nivolumab + Cabozantinib

Treatment: IO/IO & IO/TKI?

Treatment: IO/IO & IO/TKI

- Multiple studies show benefit in 1st line therapy over sunitinib
 - CheckMate 214: Ipilimumab/Nivolumab
 - KEYNOTE 426: Pembrolizumab/Axitinib
 - Javelin Renal 101: Avelumab/Axitinib
 - CheckMate 9ER: Cabozantinib/Nivolumab
 - CLEAR: Pembrolizumab/Lenvatinib (cohort 1)

VANDERBILT VUNIVERSITY Treatment: 10/10-&-10/TKI

	CheckMate 214 (Ipi/Nivo) ¹ (n=550 vs n=546)	KEYNOTE-426 (Axi/Pembro) ² (n=432 vs n=429)	CheckMate 9ER (Cabo/Nivo)³ (n=323 vs n=328)	CLEAR (Len/Pembro) ⁴ (n=355 vs n=357)
HR mOS, months	0.72 55.7 vs 38.4	0.73 45.7 vs 40.1	0.70 37.7 vs 34.3	0.72 NR vs NR
Landmark OS 12m Landmark OS 24m	83% vs 78% 71% vs 61%	90% vs 79% 74% vs 66%	86% vs 76% 70% vs 60%	90% vs 79% (est.) 79% vs 70%
HR mPFS, months	0.86 12.3 vs 12.3	0.68 15.7 vs 11.1	0.56 16.6 vs 8.3	0.39 23.9 vs 9.2
ORR % CR %	39 vs 32 12 vs 3	60 vs 40 10 vs 4	56 vs 28 12 vs 5	71 vs 36 16 vs 4
Primary PD %	18	11	6	5
IDMC population	Intermediate/Poor	All risk groups	All risk groups	All risk groups
Prior Nephrectomy %	82	83	69	74
Median f/u, months	67.7	42.8	32.9	33.7
Landmark PFS	30% (5 yrs)	29% (3 yrs)	39% (2 yrs)	

VANDERBILT VUNIVERSITY Treatment: 10/10 & 10/TKI

	CheckMate 214 (Ipi/Nivo)¹ (n=550 vs n=546)	KEYNOTE-426 (Axi/Pembro) ² (n=432 vs n=429)	CheckMate 9ER (Cabo/Nivo) ³ (n=323 vs n=328)	CLEAR (Len/Pembro) ⁴ (n=355 vs n=357)
HR mOS, months	Consistent C	OS benefit compa	red to VEGF TKI	0.72 NR vs NR
Landmark OS 12m Landmark OS 24m	83% vs 78% 71% vs 61%	90% vs 79% 74% vs 66%	86% vs 76% 70% vs 60%	90% vs 79% (est.) 79% vs 70%
HR mPFS, months	0.86 1 2.<u>3</u> vs 12.3	0.68 15.7 vs 11.1	0.56 16.6 vs 8.3	0.39 23.9 vs 9.2
ORR % CR %	3 Higher re	esponse rates wi	th TKI containing I	regimens
Primary PD %	¹⁸ Less ea	rly PD with TKI c	ontaining regimer	ns ⁵
IDMC population	Intermediate/Poor	All risk groups	All risk groups	All risk groups
Prior Nephrectomy %	82	83	69	74
Median f/u, months	67.7	42.8	32.9	33.7
Landmark PFS	30% (5 y CTLA	-4 regimen might	have higher tail o	of curve

2. Rini et al. ASCO 2021 4. Motzer et al. ASCO GU 2021

Motzer et al. ESMO 2021 Motzer et al. ASCO GU 2022

IO/TKI vs. IO/IO

	Pros	Cons
	 Consistent effects on OS, PFS and ORR across IMDC risk groups 	Long-term durability of response
іо/ткі	 Significant tumor burden reduction reflected in high ORR and long PFS 	yet to be demonstratedPotential for acute and chronic
	Manageable toxicity	TKI toxicity
	QoL maintained vs TKI alone	
	 OS and ORR advantages over TKI monotherapy 	 Potential for significant initial toxicity
10/10	Durability of response / disease-control	 Lower ORR and shorter PFS compared with IO/TKI regimens
	 Treatment-free interval possible 	
		 Less effective in favorable risk
	QoL improved vs TKI	patients

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

IMDC Prognostic Criteria

Clinical

- KPS < 80%</p>
- Time from diagnosis to treatment < 1 ye

Laboratory

- Hemoglobin < LLN
- Calcium > ULN
- Neutrophil count > ULN
- Platelet count > ULN

- Favorable: 0 risk factors → means slow-growing and/or VEGF-responsive
- Intermediate: 1-2 risk factors → medium growth rate and somewhat VEGF-responsive
- Poor: 3-6 risk factors → fast-growing and VEGF-unresponsive
- Heng DYC, et al. J Clin Oncol. 2009;27:5794-5799.

Evolution of Treatment Paradigm in mRCC

Treatment: Other?

- Clinically-evident metastatic RCC of any histologic subtype
- First documentation (radiographic or histologic) of metastatic RCC up to 12 months prior to registration on study
- No prior <u>systemic</u> therapy for RCC in the metastatic or neo/adjuvant setting.
- Prior XRT (including for CNS metastases) and prior nephrectomy/metastasectomy permitted but not required
- No disease-related symptoms
- Measurable / evaluable disease per RECIST v 1.0

Prospective phase 2 trial of Active Surveillance in mRCC

CTs q 3 months year 1; q4m year 2, then q 6 months Initiation of systemic treatment per MD / pt discretion

- FKSI-DRS (QOL) and HADS (anxiety/depression administered at baseline and every CT scan timepoint.
- Peripheral blood for immune cell quantification drawn at baseline and every CT scan timepoint.

Treatment: Active Surveillance

- Some RCC is indolent
- Avoidance of toxicity of therapy for as long as reasonable in select group
- Primary endpoint: TT systemic therapy
- N = 52, 48 in analysis
- Median f/u was 38.1 months

Treatment: Active Surveillance

Frontline Treatment for mRCC

PRINCIPLES OF SYSTEMIC THERAPY FOR RELAPSE OR STAGE IV DISEASE

FIRST-LINE THERAPY FOR CLEAR CELL HISTOLOGY							
Risk	Preferred Regimens	Other Recommended Regimens	Useful in Certain Circumstances				
Favorable ^a	Axitinib + pembrolizumab ^b (category 1) Cabozantinib + nivolumab ^b (category 1) Lenvatinib + pembrolizumab ^b (category 1)	 Axitinib + avelumab^b Cabozantinib (category 2B) Ipilimumab + nivolumab^b Pazopanib Sunitinib 	 Active surveillance^c Axitinib (category 2B) High-dose IL-2^d (category 2B) 				
Poor/ intermediate ^a	Axitinib + pembrolizumab ^b (category 1) Cabozantinib + nivolumab ^b (category 1) Ipilimumab + nivolumab ^b (category 1) Lenvatinib + pembrolizumab ^b (category 1) Cabozantinib	 Axitinib + avelumab^b Pazopanib Sunitinib 	 Axitinib (category 2B) High-dose IL-2^d (category 3) Temsirolimus^e (category 3) 				

2ND Line Treatments in 2022

- 1st line -- IO based combinations
- Ongoing prospective RCTs to determine best 2nd line outcomes
 - Post IO/IO patient progressed to 1 MOA
 - Post IO/TKI patient progressed to 2 MOA
- Current guidelines suggest TKI not previously used

2nd & Later Line Treatment for mRCC

SUBSEQUENT THERAPY FOR CLEAR CELL HISTOLOGY							
Preferred Regimens	Other Recommended Regimens	Useful in Certain Circumstances					
 Cabozantinib (category 1) Lenvatinib + everolimus Nivolumab^b (category 1) 	 Axitinib (category 1) Axitinib + pembrolizumab^b Cabozantinib + nivolumab^b Ipilimumab + nivolumab^b Lenvatinib + pembrolizumab^b Pazopanib Sunitinib Tivozanib^g (category 1) Axitinib + avelumab^b (category 3) 	 Everolimus Bevacizumab^f (category 2B) High-dose IL-2 for selected patients^d (category 2B) Sorafenib (category 3) Temsirolimus^e (category 2B) Belzutifan (category 2B) 					

Treatment: Other?

Unanswered Questions:

- Would a 1st line triplet improve outcomes vs doublet?
- Can we utilize gene expression data to choose best 1st line treatment?
- Can ipilimumab salvage response?

Triplet vs Doublet? COSMIC-313

Ongoing First-line Phase 3 Study in Renal Cell Carcinoma Comparing Nivolpi vs CaboNivolpi

COSMIC-313 Study Schematic

Advanced or metastatic RCC

- Clear cell component
- Intermediate/poor risk
- Measurable disease
 Previously untreated

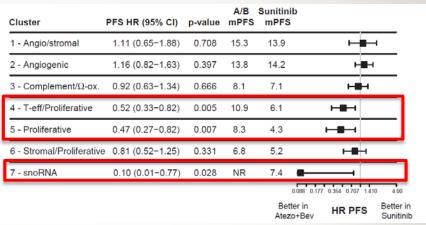
- IMDC risk score (1-2 vs 3-6
- Region ([US or Canada or Europe or Australia or New Zealand] vs [Latin America or Asia])

NCT03937219

Cabozantinib 40 mg PO QD Nivolumab 3 mg/kg IV Q3W (4 doses) Ipilimumab 1mg/kg IV Q3W (4 doses) $\overline{}$ Followed by Cabozantinib 40 mg PO QD Randomization Nivolumab 480 mg flat dose IV Q4W (2 vrs) Cabo-matched Placebo PO QD Nivolumab 3 mg/kg IV Q3W (4 doses) Ipilimumab 1mg/kg IV Q3W (4 doses) Followed by Cabo-matched Placebo PO QD Nivolumab 480 mg flat dose IV Q4W (2 yrs) Primary endpoint: PFS per RECIST 1.1 by BIRC Secondary endpoint: Overall survival

Choueiri, et al. ESMO 2022

Final Analysis (PITT Population)


PFS per RECIST v1.1 by BIRC. Data cut-off: Aug 23, 2021

Harness Gene Expression to Choose 1st Line?

Cluster 1 Cluster 6 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 7 156/823 (19%) 106/823 (13%) 98/823 (12%) 245/823 (30%) 116/823 (14%) 74/823 (9%) 28/823 (3%) Pathways Angiogenesis Angiogenesis Complement cascade T-effector Cell Cycle Stroma snoRNA Cell Cycle Fatty acid synthesis Stroma Fatty acid oxidation Ω-oxidation Cell Cycle Fatty acid synthesis snoRNA T-effector *moRNA snoRNA T-effector T-effector snoRNA. T-offector RNA profile Cell Cell Stroma Stroma Stroma Stroma Stroma Stroma Stroma Cycle Cycle Cycle Cycle Cycle Cycle Cycle FAO FAS FASI FAOI FAS/ FAO FAS/ FAS FAO! FAS/ pp pp AMPK **AMPK** MPK AMPK pp Angia Anglo Anglo Angia Angio Compleme Complement Complement Compleme Complement Complement cenesis penesis genesis genesis Cascade Cascade Cascade Cascade Cascade Cascade Cascade Myeloid D-ox. Inflammation Inflammation Inflammation Inflamination Inflammation **DNA** alts CDKN2A/B VHL VHL VHL VHL VHL VHL PBRM1 PBRM1 PBRM1 CDKN2A/B **TP53** CDKN2A/B SETD2 KDM5C KDM5C KDM5C BAP1 **TP53** PTEN PTEN PTEN BAP1

IMmotion 151 Responses Based on Cluster

OPTIC RCC Trial (NCT 05361720)

Ipilimumab as Salvage?

 If you are going to give Ipi, give it early.....

- Not a good salvage agent
- Patients less likely to tolerate

	HCRN ASCO GU 2022	OMNIVORE ASCO 2020	FRACTION ASCO 2020	TITAN RCC ESMO 2019	Salvage Ipi/Nivo (JCO 2020)
N	35	83	46	207	45
Prior TKI	No	Yes	Yes	Yes	Yes
Timing	Nivo→lpi	Nivo→lpi	Nivo+lpi	Nivo→lpi	Nivo+lpi after prior IO
Ipi doses	4	2	4	4	4
ORR	11%	4%	15%	12%	20%
CR	3%	0%	0%	3%	0%

Nivo+ipi combo untreated ccRCC ORR 39%, CR 12% (Checkmate 214)¹

Sequencing Therapy in 2022

• Goal is **CURE**

Immunotherapy offers best chance for cure

Angiogenesis is active throughout ccRCC natural history

Sequencing Therapy in 2022

- RCC is an angiogenic and inflammatory disease responsive to both anti-VEGF and IO therapy
- IO-based doublets with an anti-PD1 backbone have transformed initial management of mRCC
 - IO +VEGF regimens leading to the highest ORR/longest PFS
 - IO/IO regimens are notable for DOR/disease control
 - potential for disease control off therapy
- Single agent TKI is no longer the standard of care unless IO absolutely contraindicated
 - Every patient deserves a chance at cure with IO-based therapy
- Biomarker-based trials for personalized therapy based on tumor biology

VANDERBILT WUNIVERSITY

MEDICAL CENTER

Thank you!

