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A B S T R A C T   

Epigenetic patterns in a cell control the expression of genes and consequently determine the phenotype of a cell. 
Cancer cells possess altered epigenomes which include aberrant patterns of DNA methylation, histone tail 
modifications, nucleosome positioning and of the three-dimensional chromatin organization within a nucleus. 
These altered epigenetic patterns are potential useful biomarkers to detect cancer cells and to classify tumor 
types. In addition, the cancer epigenome dictates the response of a cancer cell to therapeutic intervention and, 
therefore its knowledge, will allow to predict response to different therapeutic approaches. Here we review the 
current state-of-the-art technologies that have been developed to decipher epigenetic patterns on the genomic 
level and discuss how these methods are potentially useful for precision oncology.   

1. Introduction 

Every cell in the human body has the same genome, but different cell 
types possess distinct phenotypes driven by distinct gene expression 
patterns. These expression patterns are mediated by the activation of cell 
type-specific transcription factors (TFs) but also, in large parts, by a 
specific configuration of the epigenome: the interplay of DNA methyl-
ation, histone tail modifications, nucleosome positioning along the 
chromosomes and the 3D structure of the chromatin within the nucleus. 
Applying the latest next generation sequencing (NGS)-based technolo-
gies, it is now possible to map these epigenetic patterns within specific 
cell types and to track epigenetic programming in the context of cellular 
differentiation processes, or across various age groups. Unique and 
distinct epigenetic patterns of the chromatin drive cell type-specific 
expression programs. In neoplastic cells, these fine-tuned patterns are 
disturbed, resulting in dysregulated gene expression, including the 
silencing of tumor suppressor genes and the activation of cancer-related 
genes. Cancer-specific epigenetic patterns might also affect response to 
therapeutic interventions. Cancers originate from distinct stages of 
development or differentiation. These processes are associated with 
massive epigenetic programming and include stages at which cells might 
be ‘epigenetically susceptible’ to malignant transformation. Conse-
quently, the epigenomes of cancer cells carry, in addition to cancer- 

specific alterations, marks that were preexisting in the cell-of-origin 
(Fig. 1). As a result, the identification of cancer cell-specific epi-
genome patterns requires sophisticated approaches that are based on 
global epigenetic profiling in small cell populations or even single cells 
and on sensitive in silico deconvolution techniques. Ultimately, the 
definition of cancer-specific epigenetic patterns will guide the identifi-
cation of novel therapeutic targets and of novel diagnostic or predictive 
biomarkers. In this review we will focus on recent developments in the 
field of epigenomic profiling and their potential application to precision 
oncology. 

1.1. Deciphering DNA modifications in cancer 

Methylation of cytosine (mC) in the context of CG dinucleotides 
(CpG) is the most common DNA modification in mammals including 
humans. Most of the about 28 million CpGs in the human genome are 
methylated, while those located in the usually CpG-rich gene promoters 
are largely unmethylated (Fig. 2). Aberrant DNA methylation in tumor 
cells was an early observed epigenetic characteristic of cancers [1–3]. 
The prognostic relevance of tumor-specific DNA methylation patterns 
has been shown, for example, in chronic lymphocytic leukemia [4] and 
in juvenile myelomonocytic leukemia [5–7]. Moreover, 
smoking-associated DNA methylation patterns present in blood cells 
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Fig. 1. The epigenomes of cancer cells. A) During differentiation, the epigenome is programmed in a cell type-specific manner. As a consequence, each cell has a cell 
type- and a differentiation stage-specific epigenetic landscape of active and inactive epigenetic programs. In addition, epigenetic patterns of normal cells are affected 
by their age and by (micro-)environmental conditions. The epigenome of a cell determines its phenotype by integrating these parameters, and, as a consequence, the 
cell’s phenotype will slightly change over time. B) The effects mediated by an oncogenic hit will depend on the cell’s phenotype and, hence, on its epigenome, 
resulting in different (sub-)types of cancer. The cancer cell-of-origin provides the epigenetic backbone of the cancer cell’s epigenome, drives tumor biology, relates to 
prognosis and determines, how the disease responds to the cancer treatment applied. The cancer cell’s epigenome can be decomposed into two main components: 1) 
the epigenome of the cell-of-origin, and 2) the cancer-specific epigenetic changes. 
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Fig. 2. Epigenomic features of the chromatin. A) The DNA methylome consists of methylated, hydroxymethylated and unmethylated CGs (black, black and white, 
white lollipops, respectively), the latter usually found in CpG-rich, active promoters (large arrow). The DNA is wrapped around nucleosomes (grey circles) which 
carry repressive (red flags) or activating (green flags) histone marks. Higher order looped structures juxtapose distant enhancers (green bar) with target promoters 
(short arrow) enabling assembly of the transcriptional machinery and initiation of transcription. B) Nucleosomes in open, active chromatin are less compacted and 
marked with H3K4ac, H3K4me1 and H3K4me3, while those in inactive chromatin are more densely packed and marked with H3K27me3 and H3K9me3. Active 
enhancers are enriched for H3K27ac and H3K4me1, and active promoters for H3K4me3. Bivalent promoters with both H3K4me3 and H3K27me3 marks are poised 
for transcription of developmental genes. C) The current model of the higher order chromatin structure and nucleus organization describes the genome as folded into 
different topologically associating domains (TADs) which are enriched for specific activating or inactivating chromatin marks. The nucleus is organized into 
chromosome territories, specific nuclear areas captured by individual chromosomes. 
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enabled to predict the incidence of lung cancer [8]. 
Current standard methods to analyze the DNA methylomes of cancer 

patients are whole genome bisulfite sequencing (WGBS) [9] which al-
lows the interrogation of all CpG sites present in the genome and 850k 
EPIC methylation arrays (Illumina) which cover the DNA methylation 
levels of 850 000 preselected CpG dinucleotides in representative 
genomic areas [10] and can be applied even to DNA from formalin-fixed 
samples (Table 1). In contrast to WGBS, DNA methylation arrays are a 
simple, relatively low-cost technology that is suitable for large patient 
numbers. This technology was widely used in The Cancer Genome Atlas 
(TCGA) or in the International Cancer Genome Consortium (ICGC). Its 
applicability in routine diagnostics was recently demonstrated in a 
multicenter study which highlighted the classification of about 100 
distinct tumor types affecting the central nervous system using a ma-
chine learning approach [11]. The study demonstrated high diagnostic 
precision of the technology and, furthermore, its diagnostic superiority 
in comparison to standard pathological diagnostics. A drawback is, 
however, that only a minority of all CpGs is covered by this array, 
resulting in a situation where DNA methylation levels of individual CpGs 
may undergo massive changes during normal cell differentiation or 
during tumorigenesis but cannot be detected since these CpGs are spared 
on the array. In contrast, the genome wide measurement of DNA 
methylation levels by WGBS allows a fine-grained discrimination be-
tween the intricate DNA methylation changes occurring during normal 
differentiation and cancer development [12] and, thus, may improve 
individual disease-staging and therapy. In general, WGBS proves ad-
vantageous in the identification of cancer-related methylation changes 
in enhancers which are highly cell type- and developmental 
stage-specific and, in contrast to promoters, CpG-poor [13,14]. How-
ever, WGBS comes with relatively high costs, around 1 000 Euro per 
sample, and the computational requirements regarding data storage, 
memory and bioinformatics tools and skills are demanding, making 
WGBS still quite a challenge in routine clinical diagnostics. 

Gene regulatory elements are usually lowly methylated, and the 
levels of promoter methylation and transcription are frequently nega-
tively correlated, while gene body methylation and transcription show a 
positive correlation [15,16]. Tumor-specific increases of methylation in 
promoters of tumor suppressor genes are used as biomarkers in precision 
oncology and analyzed in diverse malignancies to monitor onset, pro-
gression, recurrence and metastasis [17]. Local methylation changes can 
be identified routinely in a clinical setting by a variety of methods like 
pyrosequencing or matrix-assisted laser desorption ionization time of 
flight mass spectrometry [18]. 

Hydroxymethyl-cytosine (hmC) and the more oxidized, short-lived 
formyl- (fC) and carboxyl-cytosine (caC) are intermediates of active 
CpG demethylation (see Fig. 2) in the differentiation of normal cells but 
may also result in the epigenetic activation of oncogenes in cancer 
development. In glioblastoma, hmC is associated with cancer-related 
processes like stemness and proliferation, and low hmC levels corre-
late with poor prognosis [19]. hmC can be quantitated by methods like 
combined whole-genome bisulphite/oxidative bisulphite sequencing, 
EPIC arrays coupled with oxidative bisulphite treatment and 
antibody-based enrichment followed by sequencing. Each of these 
methods has its trade-offs with respect to detection limits, genomic 
coverage and costs [20]. Recent approaches enabling long-range 
genomic analysis like nanopore sequencing (see Table 1) now appear 
on the horizon to map DNA modifications based on the different DNA 
base chemistry [21]. However, nanopore sequencing is currently still too 
error prone to be used in routine cancer diagnostics. 

1.2. Profiling chromatin accessibility and genomic targets of modified 
histones in cancer 

The regional accessibility of the DNA for the transcriptional ma-
chinery is largely dictated by the positioning of nucleosomes in depen-
dence of histone modifications (see Fig. 2) [22]. Integrated with 

Table 1 
Epigenetic methods in cancer diagnostics.  

Epigenetic modification/target Assay Strength Weakness Ref. 

Methyl (Hydroxymethyl)-cytosine EPIC methylation array Automatable, FFPE-DNAa compatible, cheap, 
simple evaluation 

Low coverage, preselected sites [10]  

WGBSb Single CpG resolution Computationally demanding, relatively 
expensive 

[9]  

Single cell WGBS Discriminates between individual cells Low genomic coverage per cell [56, 
57,58] 

All cytosine modifications Nanopore sequencing Long reads, allelic resolution Error prone, expensive [21] 
Chromatin accessibility ATAC-seqc Requires only low cell number, simple May have sequence bias [24, 

25]  
Single cell ATAC-seq Discriminates between individual cells Low genomic coverage per cell [59, 

60] 
Histone modifications, transcription 

factors, chromatin shaping proteins 
Conventional ChIP-seq Widely established protocol Requires high cell numbers, low signal-to- 

background ratio, uncertain 
reproducibility 

[31]  

ChIPmentation Requires only low cell number, no library 
preparation, high-throughput compatible 

Uncertain reproducibility [35, 
36]  

CUT&RUNd Requires only low cell number, high signal-to- 
background ratio 

Requires library preparation [37, 
38]  

CUT&Tage/ACT-seqf Requires only low cell number, high signal-to- 
background ratio, no library preparation, single 
cell compatible 

Requires pA-Tn5ase protein not 
commercially available yet, may have 
sequence bias 

[39, 
40] 

Three dimensional chromatin 
structure/chromatin interaction 

Hi-C Genome wide coverage Low resolution, computationally 
demanding 

[46, 
47]  

Single cell Hi-C Discriminates between individual cells Low genomic coverage per cell [61, 
62]  

Circular chromosome 
conformation assay (4C) 

High resolution May miss interactions, limited to viewpoint 
interactions 

[55]  

a Formalin-fixed paraffin embedded. 
b Whole genome bisulfite sequencing. 
c Assay for transposase-accessible chromatin using sequencing. 
d Cleavage under targets and release using nuclease. 
e Cleavage Under Targets and Tagmentation. 
f Antibody-guided chromatin tagmentation. 
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additional genomic, epigenomic and transcriptomic features, profiles of 
the accessible chromatin provide essential insights into the mechanisms 
underlying the deregulation of the cancer genome [23]. Chromatin 
accessibility can be profiled by diverse approaches of which the assay for 
transposase-accessible chromatin using sequencing (ATAC-seq) [24,25] 
(see Table 1) is most favored because of its low input requirements, 
simplicity and high reproducibility. ATAC applies Tn5 
transposome-mediated tagmentation which cuts the accessible DNA and 
simultaneously appends oligonucleotide sequencing adapters to the 
resulting genomic fragments. In this way, ATAC avoids cumbersome 
sequencing library preparation as required in alternative approaches 
using DNases like micrococcal nuclease. 

Open promoters of transcribed genes are enriched for histone 3, post- 
translationally modified by trimethylation at lysine 4, in short 
H3K4me3, while transcriptionally inactive chromatin is enriched for 
H3K9me3 [26]. Active enhancers are enriched for H3K27ac and 
H3K4me1, while H3K27me3 generally marks inactive promoters and 
enhancers [26]. H3K27me3 and H3K4me3 occur together at bivalent 
promoters, poised for transcription of developmental genes [27] (see 
Fig. 2). Mutations in genes which encode histone modifying enzymes or 
remodeling proteins involved in nucleosome positioning lead to global 
dysregulation of gene expression and are frequently found in cancer 
[28]. Missense mutations affecting modification sites in histone genes 
exert similar global effects, as observed in high-grade childhood brain 
tumors and in tumors of bone tissue [29,30]. 

Global profiling of modified histones in the chromatin is based on the 
enrichment of specific chromatin fragments by chromatin immunopre-
cipitation followed by NGS (ChIPseq) [31] (see Table 1). In conventional 
ChIPseq, nuclear proteins are fixed to the DNA by formaldehyde cross-
linking followed by ultrasonication of the crosslinked chromatin for 
fragmentation. Studies integrating gene expression and ChIPseq data 
have helped to elucidate the underlying mechanism of oncogene upre-
gulation by aberrant enhancer-mediated activation as described, for 
example, for tumor type-specific TFs in clear cell renal carcinoma [32] 
and colorectal cancer [33] (for recent review: [34]. Conventional 
ChIPseq, however, requires up to 10 million cells which might not be 
available from small tumors. Still working with crosslinked chromatin, 
ChIPmentation proved an advancement because of its low input 
requirement due to tagmentation for efficient generation of sequencing 
libraries [35]. ChIPmentation became recently further streamlined, 
more efficient and also high-throughput compatible [36]. Other 
improved alternatives requiring much less cells than conventional 
ChIPseq are cleavage under targets and release using nuclease 
(CUT&RUN) [37,38], cleavage under targets and release using tag-
mentation (CUT&Tag) [39] and antibody-guided chromatin tagmenta-
tion (ACT-seq) [40] (see Table 1). These methods work with 
permeabilized native cells and fusion proteins with high antibody af-
finity and nuclease or tagmentation activity. Via antibody affinity, 
nuclease or transposome are guided to the chromatin targets where they 
cut the DNA into suitable fragments for NGS. It remains to be shown, 
whether the new methods can also be applied on formalin-fixed biopsies 
as has been demonstrated with conventional ChIPseq [41]. Since 
nucleosome positioning and altered histone tail modifications have been 
reported, for example, in leukemic T cells or chronic lymphocytic leu-
kemia samples [42,43], it can be envisioned that these alterations can be 
developed into diagnostic/predictive biomarkers. 

1.3. Identification of aberrant enhancer-promoter interactions in the 
cancer chromatin 

The three-dimensional (3D) structure of the chromatin contributes to 
the functional genome organization. Developmental and cell-type spe-
cific gene expression programs are orchestrated by the juxtaposition of 
distant enhancers and promoters enabling the assembly of the tran-
scriptional machinery to initiate transcription [44]. The current model 
of the functional genomic 3D-architecture describes the genome as 

folded into higher order looped structures designated chromosome ter-
ritories and topologically associating domains (TADs) (see Fig. 2) [45]. 
The concept is largely based on proximity ligation data obtained with 
the Hi-C approach (see Table 1) in which the 3D-structure of the chro-
matin is fixed prior to a series of experimental manipulations including 
DNA ligation such that juxtaposed genomic regulatory elements finally 
show up in the same sequencing reads [46,47]. 

Disturbance of the proper genomic 3D-structure can lead to ectopic 
oncogene activation by aberrant “hijacking” of a distant enhancer. Ex-
amples are the activation of the stem cell regulator EVI1 under the 
control of a distal GATA2 enhancer in cases of acute myeloid leukemia 
with an inv(3)/t(3;3) rearrangement [48], activation of the cell cycle 
regulator CCNE1 under the aberrant control of diverse enhancers by a 
variety of rearrangements in patients with gastric cancer [49], or the 
activation of TF NR4A3 in acinic cell carcinomas of the salivary glands 
due to recurrent [t(4;9)(q13;q31)] rearrangements which juxtapose 
enhancers from the SCPP gene cluster to the NR4A3 promoter [50]. 
More systematic approaches using genetic and transcriptomic data for 
the discovery of structural variant driven proto-oncogene activation has 
recently been published by the PCAWG Consortium and indicates an 
unexpected number of such enhancer-hijacking events in the cancer 
genomes [51,52]. Aberrant ectopic gene activation may also result from 
neo-enhancers, minor distal sequence alterations which provide new 
target sites for transactivating proteins. Neo-enhancers with novel 
binding sites for the transactivator MYB have been observed in cases of 
T-cell acute lymphoblastic leukemia with oncogenic monoallelic acti-
vation of TF TAL1 [53,54]. Circular chromosome conformation capture 
followed by NGS (4C-seq) enables the identification of aberrant 
enhancer-promoter interactions in tumor cells [48,55]. Like Hi-C, 4C 
exploits chromatin crosslinking and proximity ligation (see Table 1). In 
4C, the DNA of crosslinked chromatin is digested twice with different 
restriction enzymes, each time followed by proximity ligation which 
finally generates circular molecules. PCR with outward-directed primers 
from the viewpoint, the promoter of the aberrantly activated gene, 
amplifies the previously unknown interacting region supposed to 
contain the activating enhancer. Independent confirmation of the 
enhancer can be achieved by reciprocal 4C with the suspected enhancer 
as viewpoint. Additional confirmation may be obtained by ChIPseq 
addressing active enhancer marks H3K27ac and H3K4me1 and by 
luciferase enhancer reporter assays. 

1.4. Single cell epigenomics 

Epigenomic analyses are no longer confined to cells in bulk but are 
now also possible with individual cells to interrogate their DNA meth-
ylome [56–58], chromatin accessibility [59,60], chromatin configura-
tion [61,62] and post-translational histone modifications [39,40] at 
mid- to high-throughput (see Table 1). These methods enable to study 
cell identity and tissue composition, both in the context of healthy and 
diseased conditions and, thus, overcome interpretation difficulties 
introduced by cell type heterogeneity which is common in primary tis-
sue samples. For example, single cell epigenomic variability has been 
linked to functional heterogeneity in cancer cells [63], and single cell 
ATAC-seq has been used to identify cell type-specific epigenetic signa-
tures that are associated with type II diabetes [64]. Methods for inte-
grative analysis of multiple information layers, including the mutational 
status, epigenome profiles and transcription patterns obtained from one 
and the same cell, are currently being developed [65–67]. From a sys-
tems biology perspective, such multi-OMICs approaches further our 
understanding of the fundamental regulatory mechanisms underlying 
normal and malignant phenotypes. For example, a multi-OMICs single 
cell study of gastrulation revealed that epigenetic priming precedes 
cell-fate decisions in mouse embryogenesis [68]. In cancer research, 
multi-OMICs single cell studies in combination with pharmacologic or 
(epi-)genetic perturbations will be crucial to disentangle molecular 
driver events from collateral biological noise. Presently, multi-OMICs 
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single cell studies are largely confined to basic research. A recent 
example used combined single cell DNA methylation and transcriptome 
analysis together with other OMICS technologies to demonstrate that 
defects in the DNA methylation machinery alters hematopoietic differ-
entiation by skewed transcriptional priming [69]. As of today, applica-
tion of multi-OMICs single cell technologies in the clinical setting awaits 
to be established. 

1.5. Epigenetic biomarkers in liquid biopsies 

Repeated invasive biopsy resection to study cancer progression can 
be circumvented by so called liquid biopsies. These are samples taken e. 
g. from peripheral blood, saliva or urine that contain cell-free DNA 
(cfDNA) or circulating tumor cells. Epigenetic biomarkers like tumor- 
enriched non-coding RNA or tumor-specific DNA methylation patterns 
are attractive non-invasive, diagnostic targets in clinical oncology due to 
their stability in liquid biopsies [70,71]. Methods of choice for reliable 
quantification of micro-RNA expression are real-time PCR and deep 
sequencing. Circulating micro-RNAs are of potential predictive and 
prognostic value in diverse malignancies including oral, colorectal, 
endometrial and ovarian cancer [72–75]. MiR-21, for example, is known 
to silence a variety of tumor suppressor genes and proved predictive and 

prognostic in several hematological and solid tumor types. cfDNA is 
usually sparse and highly fragmented. cfDNA concentration in body 
fluids and its fragmentation and DNA methylation patterns are 
non-random and reflect characteristics like tumor entity, chromatin 
accessibility and DNA methylation profile of the original tumor cell 
[76–78]. As a further example, cell-free methylated DNA immunopre-
cipitation and high-throughput sequencing (cfMeDIP-seq) was applied 
to non-invasively profile the methylome of patients with primary 
early-stage pancreatic ductal adenocarcinoma. Comparison with corre-
sponding profiles derived from solid tissue revealed high 
disease-specific concordance and, hence, suggested that cfDNA 
methylation patterns can be employed for the non-invasive early 
detection and classification of solid tumors [78]. A recent technological 
refinement was the successful methylome profiling of tumor-derived 
cfDNA after the removal of high molecular weight genomic DNA from 
normal cells by solid phase reversible immobilization beads followed by 
low input, whole genome bisulfite sequencing using a commercial kit 
[77]. 

1.6. Precision manipulation of the (epi) genome for functional studies 

The functional relevance of epigenetic alterations can be analyzed 

Fig. 3. Integration of epigenomic data. A) Example of epigenomic analysis involving profiling of DNA methylation (DNAme; lollipops), several histone post- 
translational modifications (hPTM; red, blue and purple tracks), and chromatin accessibility (brown tracks). B) Most basic integration is performed subsequently 
to calling of hPTM peaks, differential analysis resulting in differential methylation regions (DMRs) and open chromatin sites as simple region overlaps to identify 
bona fide regions of interest (ROI). C) These regions can be integrated with information from other omics layers, e.g. differentially expressed genes (DEGs), and 
genetic analysis, including single-nucleotide polymorphisms (SNPs), structural variants (SVs), and copy-number variants (CNVs). D) More advanced strategies 
involve integration of multiple epigenomic layers into chromatin states, with hidden Markov model-based ChromHMM being by far the most popular approach. 
ChromHMM state sets for the studied tumor (X) can be uniformly compared to reference profiles of other cell types and tumors (Y). E) Alternatively, data sets with 
sufficient sample sizes can be summarized into matrices and subject to latent factor analysis methods, e.g. integrative non-negative matrix factorization and MOFA. 
These methods derive meta-variables (latent factors) integrating information across all the features within each layer as well as contribution of each of these variables 
to each of the samples. F) High-level information obtained in the integration approaches in combination with other external data can be used for downstream 
analyses, including tumor heterogeneity, cell-of-origin inference and molecular classification of tumor subtypes. 
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with genomic manipulation tools like Zinc Finger Nuclease (ZFN), 
Transcription activator-like effector nuclease (TALEN) or Clustered 
Regularly Interspaced Short Palindromic Repeats (CRISPR) [79]. 
CRISPR/Cas9, in particular, has emerged as a highly efficient manipu-
lation technique [80]. Cas9 nuclease generates double-strand breaks 
(DSBs) with high precision at target sequences determined by a com-
plementary, target sequence-specific guide RNA. Homology-directed 
repair of the DSBs in the manipulated cells can be exploited to intro-
duce precise genomic sequence changes [81]. 

In combination with guide RNA, engineered, nuclease activity- 
deficient Cas9 (dCas9) specifically binds DNA at target sequences 
without cleavage. dCas9 tethered to epigenetic editors involved in DNA 
methylation or demethylation is used to modify the methylation state of 
regulatory DNA sequences and thereby represses or activates genes [82, 
83]. Novel modular systems consisting of dCas9 fused to SunTag, a 
synthetic gene activator, recruit separately transfected epigenetic edi-
tors to genomic target sites with higher precision and, thus, reduce 
off-target DNA modifications frequently observed in earlier systems 
[84–87]. Similar to its use in targeted DNA modifications, dCas9 has 
been also exploited in the targeted modification of histones to reactivate 
silenced target genes, e.g., by increasing promoter-associated H3K4me3 
levels [88], or to induce gene silencing, e.g., by de-acetylation of 
H3K27ac [89]. While these assays most likely will not reach clinical 
practice in the near future, they will be invaluable tools in helping to 
understand the molecular consequences of an epigenetic event and 
subsequently support the researcher in selecting better targets for 
biomarker development. 

1.7. (Epi)genomic data integration 

A deep biomolecular characterization of a cancer patient’s disease 
state is a central prerequisite for appropriate treatment and for the 
development of novel biomarker. To efficiently harness this information 
from diverse genomic and epigenomic layers such as somatic single 
nucleotide variants (SNVs), structural variants (SVs), gene expression 
profiles, DNA methylation patterns and profiles of histone marks, bio-
informatic data integration is key (Fig. 3). A simple approach to data 
integration is to overlap promising regions of interest derived inde-
pendently from each layer of information. Alternatively, regions from 
one layer can be used as features to stratify the data of other layers and 
warrant the interrogation of an additional layer. For instance, inter-
section of aberrantly expressed genes with differentially methylated 
regions, SNVs, SVs and sites of histone mark enrichment may warrant 
targeted chromatin conformation assays like 4C [48]. In general, data 
derived from a combination of methods like whole genome and tran-
scriptome sequencing, ChIPseq and 4C are integrated to profile 
cancer-related enhancer-promoter interactions and enable clinically 
relevant specification of poorly characterized tumors or tumor sub-
classes [90]. 

More advanced approaches aim to consolidate heterogeneous 
epigenetic data by means of integrative statistical models. One such 
model in widespread use is ChromHMM, a Hidden Markov Model-based 
algorithm that exploits co-linear histone modification profiles to assign 
each genomic locus to a distinct chromatin state, e.g., active transcrip-
tion start site, enhancer or heterochromatic domain (see Fig. 3) [91]. 
Other methods try to recover hidden (latent) factors that simultaneously 
act upon several epigenomic layers. As a recent example, Multi-Omics 
Factor Analysis (MOFA) algorithm fits a model for each layer, with 
one term for factors shared by all layers, and another term capturing 
layer-specific modulations of the common factors [92]. Further inte-
grative modelling approaches are based on non-negative matrix factor-
ization [93], kernel methods [94] or similarity network fusion [95] and 
were extensively reviewed elsewhere [96]. Unobserved epigenetic states 
as those output by ChromHMM or latent variability factors, derived by 
methods similar to MOFA, are instrumental both, for mechanistic 
inference about the biology of respective tumor entities, as well as 
candidate prioritization in oncological biomarker development and drug 
design [97,98]. 

1.8. Summary and outlook 

While genetic alterations are widely explored in the context of pre-
cision oncology, this is not yet the case for epigenetic modifications, 
most likely due to the past lack in appropriate technologies. This is now 
changing and the first examples highlighting the usefulness of DNA 
methylomes, nucleosome positioning or histone modification patterns 
for molecular diagnostics have been published for medulloblastomas, 
ependymomas or chronic lymphocytic leukemia [11,42,99]. Similarly, 
DNA methylome data can be used to predict response to therapy as 
shown for juvenile myelomonocytic leukemia [5–7] and for chronic 
lymphocytic leukemia [12]. Currently the most advanced epigenetic 
approach to contribute to routine cancer diagnostics in a clinical setting 
is DNA methylome analysis using EPIC arrays. With targeted 
gene-specific methods it will also be possible to develop marker panels 
detecting cancer-specific epigenetic alterations in circulating tumor cells 
or cell-free DNA isolated from body fluids of tumor patients (Table 2). 
The workflow for defining novel biomarkers should start with 
genome-wide profiling for epigenetic alterations, followed by a selection 
and validation within larger cohorts and finally an improved under-
standing based on integrative data analysis and molecular evaluations of 
the consequences of an epigenetic event. 

Declaration of Competing Interest 

The authors report no declarations of interest. 

References 

[1] A.P. Feinberg, B. Vogelstein, Hypomethylation of ras oncogenes in primary human 
cancers, Biochem. Biophys. Res. Commun. 111 (1) (1983) 47–54. 

[2] M.A. Gama-Sosa, V.A. Slagel, R.W. Trewyn, R. Oxenhandler, K.C. Kuo, C. 
W. Gehrke, et al., The 5-methylcytosine content of DNA from human tumors, 
Nucleic Acids Res. 11 (19) (1983) 6883–6894. 

[3] G.A. Romanov, B.F. Vanyushin, Methylation of reiterated sequences in mammalian 
DNAs. Effects of the tissue type, age, malignancy and hormonal induction, 
Biochim. Biophys. Acta 653 (2) (1981) 204–218. 

[4] R. Claus, D.M. Lucas, S. Stilgenbauer, A.S. Ruppert, L. Yu, M. Zucknick, et al., 
Quantitative DNA methylation analysis identifies a single CpG dinucleotide 
important for ZAP-70 expression and predictive of prognosis in chronic 
lymphocytic leukemia, J. Clin. Oncol. 30 (20) (2012) 2483–2491. 

[5] D.B. Lipka, T. Witte, R. Toth, J. Yang, M. Wiesenfarth, P. Nollke, et al., RAS- 
pathway mutation patterns define epigenetic subclasses in juvenile 
myelomonocytic leukemia, Nat. Commun. 8 (1) (2017) 2126. 

[6] N. Murakami, Y. Okuno, K. Yoshida, Y. Shiraishi, G. Nagae, K. Suzuki, et al., 
Integrated molecular profiling of juvenile myelomonocytic leukemia, Blood 131 
(14) (2018) 1576–1586. 

[7] E. Stieglitz, T. Mazor, A.B. Olshen, H. Geng, L.C. Gelston, J. Akutagawa, et al., 
Genome-wide DNA methylation is predictive of outcome in juvenile 
myelomonocytic leukemia, Nat. Commun. 8 (1) (2017) 2127. 

Table 2 
Open problems and possible solutions.  

Problem Solution 

Detection of premalignant stages Population-based long-term studies are needed 
Defined tumor- and stage-specific 

characteristics 
Large cohorts are needed, integrated molecular 
profiling, computational framework 

Cell-of-origin identification Molecular characterization at single cell level or 
with highly selected cell populations 

Non-invasive molecular 
diagnostics 

Analysis of circulating tumor-derived DNA 
(ctDNA) or cells; enrichment of tumor-specific 
target molecules 

Monitoring of response to 
treatment and disease 
recurrence 

Sensitive assays for non-invasive diagnostics 
from ctDNA; knowledge about tumor-specific 
markers 

Personalized therapy Integrated molecular profiling, defined tumor- 
and stage-specific molecular characteristics, 
targeted epigenetic therapies  

D. Weichenhan et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0005
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0005
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0010
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0010
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0010
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0015
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0015
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0015
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0020
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0020
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0020
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0020
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0025
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0025
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0025
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0030
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0030
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0030
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0035
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0035
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0035


Seminars in Cancer Biology 84 (2022) 60–68

67

[8] Y. Zhang, M. Elgizouli, B. Schottker, B. Holleczek, A. Nieters, H. Brenner, Smoking- 
associated DNA methylation markers predict lung cancer incidence, Clin. 
Epigenetics 8 (2016) 127. 

[9] R. Lister, M. Pelizzola, R.H. Dowen, R.D. Hawkins, G. Hon, J. Tonti-Filippini, et al., 
Human DNA methylomes at base resolution show widespread epigenomic 
differences, Nature 462 (7271) (2009) 315–322. 

[10] R. Pidsley, E. Zotenko, T.J. Peters, M.G. Lawrence, G.P. Risbridger, P. Molloy, et 
al., Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for 
whole-genome DNA methylation profiling, Genome Biol. 17 (1) (2016) 208. 

[11] D. Capper, D.T.W. Jones, M. Sill, V. Hovestadt, D. Schrimpf, D. Sturm, et al., DNA 
methylation-based classification of central nervous system tumours, Nature 555 
(7697) (2018) 469–474. 

[12] C.C. Oakes, M. Seifert, Y. Assenov, L. Gu, M. Przekopowitz, A.S. Ruppert, et al., 
DNA methylation dynamics during B cell maturation underlie a continuum of 
disease phenotypes in chronic lymphocytic leukemia, Nat. Genet. 48 (3) (2016) 
253–264. 

[13] O. Oyinlade, S. Wei, K. Kammers, S. Liu, S. Wang, D. Ma, et al., Analysis of KLF4 
regulated genes in cancer cells reveals a role of DNA methylation in promoter- 
enhancer interactions, Epigenetics 13 (7) (2018) 751–768. 

[14] R. Pidsley, M.G. Lawrence, E. Zotenko, B. Niranjan, A. Statham, J. Song, et al., 
Enduring epigenetic landmarks define the cancer microenvironment, Genome Res. 
28 (5) (2018) 625–638. 

[15] M.P. Ball, J.B. Li, Y. Gao, J.H. Lee, E.M. LeProust, I.H. Park, et al., Targeted and 
genome-scale strategies reveal gene-body methylation signatures in human cells, 
Nat. Biotechnol. 27 (4) (2009) 361–368. 

[16] P.A. Jones, Functions of DNA methylation: islands, start sites, gene bodies and 
beyond, Nat. Rev. Genet. 13 (7) (2012) 484–492. 

[17] R.J. Werner, A.D. Kelly, J.J. Issa, Epigenetics and precision oncology, Cancer J. 23 
(5) (2017) 262–269. 

[18] B. consortium, Quantitative comparison of DNA methylation assays for biomarker 
development and clinical applications, Nat. Biotechnol. 34 (7) (2016) 726–737. 

[19] K.C. Johnson, E.A. Houseman, J.E. King, K.M. von Herrmann, C.E. Fadul, B. 
C. Christensen, 5-Hydroxymethylcytosine localizes to enhancer elements and is 
associated with survival in glioblastoma patients, Nat. Commun. 7 (2016) 13177. 

[20] K. Skvortsova, E. Zotenko, P.L. Luu, C.M. Gould, S.S. Nair, S.J. Clark, et al., 
Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling 
approaches in human DNA, Epigenetics Chromatin 10 (2017) 16. 

[21] Q. Liu, L. Fang, G. Yu, D. Wang, C.L. Xiao, K. Wang, Detection of DNA base 
modifications by deep recurrent neural network on Oxford Nanopore sequencing 
data, Nat. Commun. 10 (1) (2019) 2449. 

[22] D.E. Schones, K. Cui, S. Cuddapah, T.Y. Roh, A. Barski, Z. Wang, et al., Dynamic 
regulation of nucleosome positioning in the human genome, Cell 132 (5) (2008) 
887–898. 

[23] M.R. Corces, J.M. Granja, S. Shams, B.H. Louie, J.A. Seoane, W. Zhou, et al., The 
chromatin accessibility landscape of primary human cancers, Science 362 (6413) 
(2018). 

[24] J.D. Buenrostro, P.G. Giresi, L.C. Zaba, H.Y. Chang, W.J. Greenleaf, Transposition 
of native chromatin for fast and sensitive epigenomic profiling of open chromatin, 
DNA-binding proteins and nucleosome position, Nat. Methods 10 (12) (2013) 
1213–1218. 

[25] M.R. Corces, A.E. Trevino, E.G. Hamilton, P.G. Greenside, N.A. Sinnott-Armstrong, 
S. Vesuna, et al., An improved ATAC-seq protocol reduces background and enables 
interrogation of frozen tissues, Nat. Methods 14 (10) (2017) 959–962. 

[26] V.W. Zhou, A. Goren, B.E. Bernstein, Charting histone modifications and the 
functional organization of mammalian genomes, Nat. Rev. Genet. 12 (1) (2011) 
7–18. 

[27] P. Voigt, W.W. Tee, D. Reinberg, A double take on bivalent promoters, Genes Dev. 
27 (12) (2013) 1318–1338. 

[28] M.A. Dawson, The cancer epigenome: concepts, challenges, and therapeutic 
opportunities, Science 355 (6330) (2017) 1147–1152. 

[29] D. Bechet, G.G. Gielen, A. Korshunov, S.M. Pfister, C. Rousso, D. Faury, et al., 
Specific detection of methionine 27 mutation in histone 3 variants (H3K27M) in 
fixed tissue from high-grade astrocytomas, Acta Neuropathol. 128 (5) (2014) 
733–741. 

[30] S. Behjati, P.S. Tarpey, N. Presneau, S. Scheipl, N. Pillay, P. Van Loo, et al., Distinct 
H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor 
of bone, Nat. Genet. 45 (12) (2013) 1479–1482. 

[31] D.S. Johnson, A. Mortazavi, R.M. Myers, B. Wold, Genome-wide mapping of in vivo 
protein-DNA interactions, Science 316 (5830) (2007) 1497–1502. 

[32] X. Yao, J. Tan, K.J. Lim, J. Koh, W.F. Ooi, Z. Li, et al., VHL deficiency drives 
enhancer activation of oncogenes in clear cell renal cell carcinoma, Cancer Discov. 
7 (11) (2017) 1284–1305. 

[33] A.J. Cohen, A. Saiakhova, O. Corradin, J.M. Luppino, K. Lovrenert, C.F. Bartels, et 
al., Hotspots of aberrant enhancer activity punctuate the colorectal cancer 
epigenome, Nat. Commun. 8 (2017) 14400. 

[34] P. Cejas, H.W. Long, Principles and methods of integrative chromatin analysis in 
primary tissues and tumors, Biochim. Biophys. Acta Rev. Cancer 1873 (1) (2019), 
188333. 

[35] C. Schmidl, A.F. Rendeiro, N.C. Sheffield, C. Bock, ChIPmentation: fast, robust, 
low-input ChIP-seq for histones and transcription factors, Nat. Methods 12 (10) 
(2015) 963–965. 

[36] C. Gustafsson, A. De Paepe, C. Schmidl, R. Mansson, High-throughput 
ChIPmentation: freely scalable, single day ChIPseq data generation from very low 
cell-numbers, BMC Genomics 20 (1) (2019) 59. 

[37] M.P. Meers, T.D. Bryson, J.G. Henikoff, S. Henikoff, Improved CUT&RUN 
chromatin profiling tools, Elife 8 (2019) e46314. 

[38] P.J. Skene, J.G. Henikoff, S. Henikoff, Targeted in situ genome-wide profiling with 
high efficiency for low cell numbers, Nat. Protoc. 13 (5) (2018) 1006–1019. 

[39] H.S. Kaya-Okur, S.J. Wu, C.A. Codomo, E.S. Pledger, T.D. Bryson, J.G. Henikoff, et 
al., CUT&Tag for efficient epigenomic profiling of small samples and single cells, 
Nat. Commun. 10 (1) (2019) 1930. 

[40] B. Carter, W.L. Ku, J.Y. Kang, G. Hu, J. Perrie, Q. Tang, et al., Mapping histone 
modifications in low cell number and single cells using antibody-guided chromatin 
tagmentation (ACT-seq), Nat. Commun. 10 (1) (2019) 3747. 

[41] P. Cejas, L. Li, N.K. O’Neill, M. Duarte, P. Rao, M. Bowden, et al., Chromatin 
immunoprecipitation from fixed clinical tissues reveals tumor-specific enhancer 
profiles, Nat. Med. 22 (6) (2016) 685–691. 

[42] A.F. Rendeiro, C. Schmidl, J.C. Strefford, R. Walewska, Z. Davis, M. Farlik, et al., 
Chromatin accessibility maps of chronic lymphocytic leukaemia identify subtype- 
specific epigenome signatures and transcription regulatory networks, Nat. 
Commun. 7 (2016) 11938. 

[43] A.T. Satpathy, N. Saligrama, J.D. Buenrostro, Y. Wei, B. Wu, A.J. Rubin, et al., 
Transcript-indexed ATAC-seq for precision immune profiling, Nat. Med. 24 (5) 
(2018) 580–590. 

[44] M.H. Kagey, J.J. Newman, S. Bilodeau, Y. Zhan, D.A. Orlando, N.L. van Berkum, et 
al., Mediator and cohesin connect gene expression and chromatin architecture, 
Nature 467 (7314) (2010) 430–435. 

[45] B. Bonev, G. Cavalli, Organization and function of the 3D genome, Nat. Rev. Genet. 
17 (11) (2016) 661–678. 

[46] J.R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, et al., Topological domains in 
mammalian genomes identified by analysis of chromatin interactions, Nature 485 
(7398) (2012) 376–380. 

[47] E. Lieberman-Aiden, N.L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, 
A. Telling, et al., Comprehensive mapping of long-range interactions reveals 
folding principles of the human genome, Science 326 (5950) (2009) 289–293. 

[48] S. Groschel, M.A. Sanders, R. Hoogenboezem, E. de Wit, B.A.M. Bouwman, 
C. Erpelinck, et al., A single oncogenic enhancer rearrangement causes 
concomitant EVI1 and GATA2 deregulation in leukemia, Cell 157 (2) (2014) 
369–381. 

[49] W.F. Ooi, A.M. Nargund, K.J. Lim, S. Zhang, M. Xing, A. Mandoli, et al., Integrated 
paired-end enhancer profiling and whole-genome sequencing reveals recurrent 
CCNE1 and IGF2 enhancer hijacking in primary gastric adenocarcinoma, Gut 
(2019) online ahead of print. 

[50] F. Haller, M. Bieg, R. Will, C. Korner, D. Weichenhan, A. Bott, et al., Enhancer 
hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinomas 
of the salivary glands, Nat. Commun. 10 (1) (2019) 368. 

[51] Y. Zhang, F. Chen, N.A. Fonseca, Y. He, M. Fujita, H. Nakagawa, et al., High- 
coverage whole-genome analysis of 1220 cancers reveals hundreds of genes 
deregulated by rearrangement-mediated cis-regulatory alterations, Nat. Commun. 
11 (1) (2020) 736. 

[52] Y. Zhang, L. Yang, M. Kucherlapati, F. Chen, A. Hadjipanayis, A. Pantazi, et al., 
A pan-cancer compendium of genes deregulated by somatic genomic 
rearrangement across more than 1,400 cases, Cell Rep. 24 (2) (2018) 515–527. 

[53] M.R. Mansour, B.J. Abraham, L. Anders, A. Berezovskaya, A. Gutierrez, A. 
D. Durbin, et al., Oncogene regulation. An oncogenic super-enhancer formed 
through somatic mutation of a noncoding intergenic element, Science 346 (6215) 
(2014) 1373–1377. 

[54] J.M. Navarro, A. Touzart, L.C. Pradel, M. Loosveld, M. Koubi, R. Fenouil, et al., 
Site- and allele-specific polycomb dysregulation in T-cell leukaemia, Nat. Commun. 
6 (2015) 6094. 

[55] H.J. van de Werken, G. Landan, S.J. Holwerda, M. Hoichman, P. Klous, R. Chachik, 
et al., Robust 4C-seq data analysis to screen for regulatory DNA interactions, Nat. 
Methods 9 (10) (2012) 969–972. 

[56] M. Farlik, N.C. Sheffield, A. Nuzzo, P. Datlinger, A. Schonegger, J. Klughammer, et 
al., Single-cell DNA methylome sequencing and bioinformatic inference of 
epigenomic cell-state dynamics, Cell Rep. 10 (8) (2015) 1386–1397. 

[57] R.M. Mulqueen, D. Pokholok, S.J. Norberg, K.A. Torkenczy, A.J. Fields, D. Sun, et 
al., Highly scalable generation of DNA methylation profiles in single cells, Nat. 
Biotechnol. 36 (5) (2018) 428–431. 

[58] S.A. Smallwood, H.J. Lee, C. Angermueller, F. Krueger, H. Saadeh, J. Peat, et al., 
Single-cell genome-wide bisulfite sequencing for assessing epigenetic 
heterogeneity, Nat. Methods 11 (8) (2014) 817–820. 

[59] J.D. Buenrostro, B. Wu, U.M. Litzenburger, D. Ruff, M.L. Gonzales, M.P. Snyder, et 
al., Single-cell chromatin accessibility reveals principles of regulatory variation, 
Nature 523 (7561) (2015) 486–490. 

[60] D.A. Cusanovich, R. Daza, A. Adey, H.A. Pliner, L. Christiansen, K.L. Gunderson, et 
al., Multiplex single cell profiling of chromatin accessibility by combinatorial 
cellular indexing, Science 348 (6237) (2015) 910–914. 

[61] T. Nagano, Y. Lubling, T.J. Stevens, S. Schoenfelder, E. Yaffe, W. Dean, et al., 
Single-cell Hi-C reveals cell-to-cell variability in chromosome structure, Nature 502 
(7469) (2013) 59–64. 

[62] V. Ramani, X. Deng, R. Qiu, C. Lee, C.M. Disteche, W.S. Noble, et al., Sci-Hi-C: a 
single-cell Hi-C method for mapping 3D genome organization in large number of 
single cells, Methods 170 (2020) 61–68. 

[63] U.M. Litzenburger, J.D. Buenrostro, B. Wu, Y. Shen, N.C. Sheffield, A. Kathiria, et 
al., Single-cell epigenomic variability reveals functional cancer heterogeneity, 
Genome Biol. 18 (1) (2017) 15. 

[64] V. Rai, D.X. Quang, M.R. Erdos, D.A. Cusanovich, R.M. Daza, N. Narisu, et al., 
Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of 
rare cells reveals cell-specific type 2 diabetes regulatory signatures, Mol. Metab. 32 
(2020) 109–121. 

D. Weichenhan et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0040
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0040
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0040
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0045
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0045
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0045
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0050
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0050
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0050
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0055
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0055
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0055
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0060
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0060
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0060
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0060
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0065
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0065
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0065
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0070
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0070
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0070
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0075
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0075
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0075
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0080
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0080
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0085
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0085
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0090
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0090
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0095
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0095
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0095
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0100
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0100
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0100
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0105
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0105
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0105
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0110
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0110
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0110
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0115
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0115
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0115
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0120
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0120
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0120
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0120
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0125
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0125
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0125
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0130
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0130
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0130
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0135
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0135
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0140
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0140
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0145
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0145
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0145
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0145
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0150
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0150
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0150
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0155
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0155
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0160
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0160
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0160
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0165
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0165
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0165
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0170
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0170
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0170
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0175
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0175
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0175
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0180
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0180
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0180
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0185
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0185
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0190
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0190
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0195
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0195
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0195
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0200
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0200
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0200
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0205
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0205
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0205
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0210
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0210
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0210
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0210
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0215
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0215
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0215
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0220
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0220
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0220
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0225
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0225
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0230
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0230
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0230
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0235
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0235
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0235
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0240
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0240
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0240
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0240
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0245
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0245
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0245
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0245
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0250
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0250
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0250
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0255
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0255
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0255
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0255
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0260
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0260
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0260
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0265
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0265
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0265
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0265
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0270
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0270
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0270
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0275
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0275
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0275
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0280
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0280
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0280
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0285
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0285
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0285
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0290
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0290
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0290
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0295
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0295
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0295
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0300
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0300
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0300
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0305
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0305
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0305
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0310
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0310
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0310
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0315
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0315
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0315
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0320
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0320
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0320
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0320


Seminars in Cancer Biology 84 (2022) 60–68

68

[65] C. Angermueller, S.J. Clark, H.J. Lee, I.C. Macaulay, M.J. Teng, T.X. Hu, et al., 
Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity, 
Nat. Methods 13 (3) (2016) 229–232. 

[66] S.J. Clark, R. Argelaguet, C.A. Kapourani, T.M. Stubbs, H.J. Lee, C. Alda-Catalinas, 
et al., scNMT-seq enables joint profiling of chromatin accessibility DNA 
methylation and transcription in single cells, Nat. Commun. 9 (1) (2018) 781. 

[67] I.C. Macaulay, W. Haerty, P. Kumar, Y.I. Li, T.X. Hu, M.J. Teng, et al., G&T-seq: 
parallel sequencing of single-cell genomes and transcriptomes, Nat. Methods 12 (6) 
(2015) 519–522. 

[68] R. Argelaguet, S.J. Clark, H. Mohammed, L.C. Stapel, C. Krueger, C.A. Kapourani, 
et al., Multi-omics profiling of mouse gastrulation at single-cell resolution, Nature 
576 (7787) (2019) 487–491. 

[69] F. Izzo, S.C. Lee, A. Poran, R. Chaligne, F. Gaiti, B. Gross, et al., DNA methylation 
disruption reshapes the hematopoietic differentiation landscape, Nat. Genet. 52 (4) 
(2020) 378–387. 

[70] K. Kaminska, E. Nalejska, M. Kubiak, J. Wojtysiak, L. Zolna, J. Kowalewski, et al., 
Prognostic and predictive epigenetic biomarkers in oncology, Mol. Diagn. Ther. 23 
(1) (2019) 83–95. 

[71] Y. van der Pol, F. Mouliere, Toward the early detection of Cancer by decoding the 
epigenetic and environmental fingerprints of cell-free DNA, Cancer Cell 36 (4) 
(2019) 350–368. 

[72] S. Mazumder, S. Datta, J.G. Ray, K. Chaudhuri, R. Chatterjee, Liquid biopsy: 
miRNA as a potential biomarker in oral cancer, Cancer Epidemiol. 58 (2019) 
137–145. 

[73] N. Normanno, A. Cervantes, F. Ciardiello, A. De Luca, C. Pinto, The liquid biopsy in 
the management of colorectal cancer patients: current applications and future 
scenarios, Cancer Treat. Rev. 70 (2018) 1–8. 

[74] L. Muinelo-Romay, C. Casas-Arozamena, M. Abal, Liquid biopsy in endometrial 
Cancer: new opportunities for personalized oncology, Int. J. Mol. Sci. 19 (8) 
(2018). 

[75] L. Giannopoulou, M. Zavridou, S. Kasimir-Bauer, E.S. Lianidou, Liquid biopsy in 
ovarian cancer: the potential of circulating miRNAs and exosomes, Transl. Res. 205 
(2019) 77–91. 

[76] S. Cristiano, A. Leal, J. Phallen, J. Fiksel, V. Adleff, D.C. Bruhm, et al., Genome- 
wide cell-free DNA fragmentation in patients with cancer, Nature 570 (7761) 
(2019) 385–389. 

[77] E.C. Maggi, S. Gravina, H. Cheng, B. Piperdi, Z. Yuan, X. Dong, et al., Development 
of a method to implement whole-genome bisulfite sequencing of cfDNA from 
Cancer patients and a mouse tumor model, Front. Genet. 9 (2018) 6. 

[78] S.Y. Shen, R. Singhania, G. Fehringer, A. Chakravarthy, M.H.A. Roehrl, 
D. Chadwick, et al., Sensitive tumour detection and classification using plasma cell- 
free DNA methylomes, Nature 563 (7732) (2018) 579–583. 

[79] T. Gaj, C.A. Gersbach, C.F. Barbas 3rd, ZFN, TALEN, and CRISPR/Cas-based 
methods for genome engineering, Trends Biotechnol. 31 (7) (2013) 397–405. 

[80] M. Adli, The CRISPR tool kit for genome editing and beyond, Nat. Commun. 9 (1) 
(2018) 1911. 

[81] H. Wang, M. La Russa, L.S. Qi, CRISPR/Cas9 in genome editing and beyond, Annu. 
Rev. Biochem. 85 (2016) 227–264. 

[82] Y. Lei, X. Zhang, J. Su, M. Jeong, M.C. Gundry, Y.H. Huang, et al., Targeted DNA 
methylation in vivo using an engineered dCas9-MQ1 fusion protein, Nat. Commun. 
8 (2017) 16026. 

[83] X.S. Liu, H. Wu, X. Ji, Y. Stelzer, X. Wu, S. Czauderna, et al., Editing DNA 
methylation in the mammalian genome, Cell 167 (1) (2016) 233–247, e17. 

[84] C. Galonska, J. Charlton, A.L. Mattei, J. Donaghey, K. Clement, H. Gu, et al., 
Genome-wide tracking of dCas9-methyltransferase footprints, Nat. Commun. 9 (1) 
(2018) 597. 

[85] C. Pflueger, D. Tan, T. Swain, T. Nguyen, J. Pflueger, C. Nefzger, et al., A modular 
dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target 
activity of direct fusion dCas9-DNMT3A constructs, Genome Res. 28 (8) (2018) 
1193–1206. 

[86] Y.H. Huang, J. Su, Y. Lei, L. Brunetti, M.C. Gundry, X. Zhang, et al., DNA 
epigenome editing using CRISPR-Cas SunTag-directed DNMT3A, Genome Biol. 18 
(1) (2017) 176. 

[87] S. Morita, H. Noguchi, T. Horii, K. Nakabayashi, M. Kimura, K. Okamura, et al., 
Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 
catalytic domain fusions, Nat. Biotechnol. 34 (10) (2016) 1060–1065. 

[88] D. Cano-Rodriguez, R.A. Gjaltema, L.J. Jilderda, P. Jellema, J. Dokter-Fokkens, M. 
H. Ruiters, et al., Writing of H3K4Me3 overcomes epigenetic silencing in a 
sustained but context-dependent manner, Nat. Commun. 7 (2016) 12284. 

[89] D.Y. Kwon, Y.T. Zhao, J.M. Lamonica, Z. Zhou, Locus-specific histone 
deacetylation using a synthetic CRISPR-Cas9-based HDAC, Nat. Commun. 8 (2017) 
15315. 

[90] C.Y. Lin, S. Erkek, Y. Tong, L. Yin, A.J. Federation, M. Zapatka, et al., Active 
medulloblastoma enhancers reveal subgroup-specific cellular origins, Nature 530 
(7588) (2016) 57–62. 

[91] J. Ernst, M. Kellis, ChromHMM: automating chromatin-state discovery and 
characterization, Nat. Methods 9 (3) (2012) 215–216. 

[92] R. Argelaguet, B. Velten, D. Arnol, S. Dietrich, T. Zenz, J.C. Marioni, et al., Multi- 
Omics Factor Analysis-a framework for unsupervised integration of multi-omics 
data sets, Mol. Syst. Biol. 14 (6) (2018) e8124. 

[93] Z. Yang, G. Michailidis, A non-negative matrix factorization method for detecting 
modules in heterogeneous omics multi-modal data, Bioinformatics 32 (1) (2016) 
1–8. 

[94] G.R. Lanckriet, T. De Bie, N. Cristianini, M.I. Jordan, W.S. Noble, A statistical 
framework for genomic data fusion, Bioinformatics 20 (16) (2004) 2626–2635. 

[95] B. Wang, A.M. Mezlini, F. Demir, M. Fiume, Z. Tu, M. Brudno, et al., Similarity 
network fusion for aggregating data types on a genomic scale, Nat. Methods 11 (3) 
(2014) 333–337. 

[96] E. Cazaly, J. Saad, W. Wang, C. Heckman, M. Ollikainen, J. Tang, Making sense of 
the epigenome using data integration approaches, Front. Pharmacol. 10 (2019) 
126. 

[97] E. Stewart, J. McEvoy, H. Wang, X. Chen, V. Honnell, M. Ocarz, et al., 
Identification of therapeutic targets in Rhabdomyosarcoma through integrated 
genomic, Epigenomic, and proteomic analyses, Cancer Cell 34 (3) (2018) 411–426, 
e19. 

[98] B. Zhu, N. Song, R. Shen, A. Arora, M.J. Machiela, L. Song, et al., Integrating 
clinical and multiple omics data for prognostic assessment across human cancers, 
Sci. Rep. 7 (1) (2017) 16954. 

[99] S.C. Mack, I. Singh, X. Wang, R. Hirsch, Q. Wu, R. Villagomez, et al., Chromatin 
landscapes reveal developmentally encoded transcriptional states that define 
human glioblastoma, J. Exp. Med. 216 (5) (2019) 1071–1090. 

D. Weichenhan et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0325
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0325
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0325
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0330
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0330
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0330
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0335
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0335
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0335
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0340
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0340
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0340
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0345
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0345
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0345
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0350
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0350
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0350
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0355
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0355
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0355
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0360
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0360
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0360
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0365
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0365
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0365
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0370
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0370
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0370
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0375
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0375
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0375
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0380
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0380
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0380
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0385
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0385
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0385
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0390
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0390
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0390
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0395
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0395
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0400
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0400
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0405
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0405
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0410
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0410
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0410
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0415
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0415
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0420
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0420
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0420
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0425
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0425
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0425
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0425
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0430
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0430
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0430
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0435
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0435
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0435
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0440
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0440
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0440
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0445
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0445
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0445
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0450
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0450
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0450
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0455
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0455
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0460
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0460
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0460
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0465
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0465
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0465
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0470
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0470
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0475
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0475
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0475
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0480
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0480
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0480
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0485
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0485
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0485
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0485
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0490
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0490
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0490
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0495
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0495
http://refhub.elsevier.com/S1044-579X(20)30175-9/sbref0495

	Epigenomic technologies for precision oncology
	1 Introduction
	1.1 Deciphering DNA modifications in cancer
	1.2 Profiling chromatin accessibility and genomic targets of modified histones in cancer
	1.3 Identification of aberrant enhancer-promoter interactions in the cancer chromatin
	1.4 Single cell epigenomics
	1.5 Epigenetic biomarkers in liquid biopsies
	1.6 Precision manipulation of the (epi) genome for functional studies
	1.7 (Epi)genomic data integration
	1.8 Summary and outlook

	Declaration of Competing Interest
	References


