



MCW 2025 Controversies in Hematologic Malignancies Symposium

# Multiple Myeloma Immunotherapies – Targets, Timing, Sequencing, Reusing

Alfred Garfall, MD Associate Professor of Medicine

1 March 2025

#### Disclosures

- Research funding: Johnson & Johnson, CRISPR Therapeutics, Novartis
- Consultancies: Johnson & Johnson, Gracell, Abbvie, Regeneron, BMS, Smart Immune, Novartis
- IDMC Membership: Johnson & Johnson
- Intellectual property: Patents and patent applications in field of cellular immunotherapy



### Outline

- What we do now and why?
  - CAR T cells: how early?
  - Sequencing of CAR T cells, bispecific antibodies, and targets
- Where are we going?
  - Role for belantamab
  - Fixed-duration bispecific antibody therapy
  - New agents (trispecifics, anito-cel, etc)
  - Ongoing first- and early-line trials





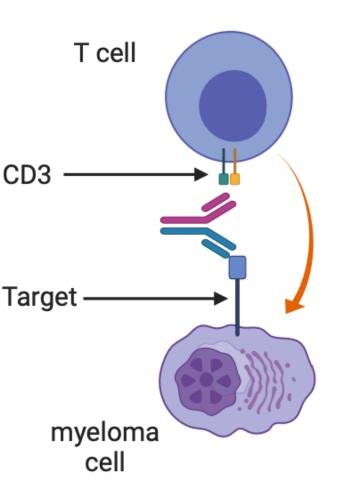
### Outline

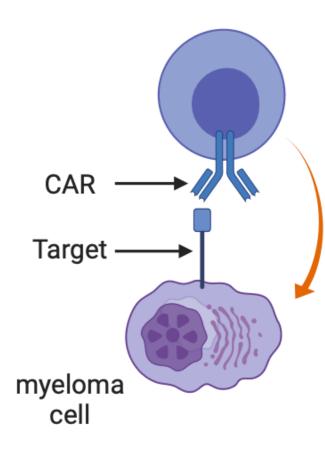
- What we do now and why?
  - CAR T cells: how early?
  - Sequencing of CAR T cells, bispecific antibodies, and targets
- Where are we going?
  - Role for belantamab
  - Fixed-duration bispecific antibody therapy
  - New agents (trispecifics, anito-cel, etc)
  - Ongoing first- and early-line trials





#### **Bispecific Antibody**


#### **CAR T Cell**




GPRC5D

Talquetamab\* Forimtamig

FCRH5 Cevostamab





BCMA Ide-cel\* Cilta-cel\* PHE-885 BMS-986354 GC012F ALLO-715 CART-ddBCMA

**GPRC5D** BMS-986393 MCARH109

\*Therapies with marketing authorization

Image created with BioRender



#### Phase 1/2 single-arm studies of FDA-approved agents

|                            | Indication                        | ORR              | PFS/DOR          | Toxicity                                                                                                                                                         |
|----------------------------|-----------------------------------|------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lde-cel <sup>1</sup>       | FDA/NCCN:<br>2+ prior lines       | 73%<br>(67% ITT) | 8.8 m<br>10.7 m  | <ul> <li>CRS/neurotoxicity (potentially severe)</li> <li>ICANS</li> </ul>                                                                                        |
| Cilta-cel <sup>2,3</sup>   | FDA/NCCN:<br>1+ prior lines       | 97%<br>(83% ITT) | 34.9 m<br>33.9 m | <ul> <li>Others (Parkinsonism, CN palsy)</li> <li>Infections</li> <li>Cytopenias (potentially severe)</li> <li>Misc (enterocolitis, other autoimmune)</li> </ul> |
| Teclistamab <sup>4,5</sup> | FDA: 4+ prior<br>lines of therapy | 63%              | 12.5 m<br>24 m   | <ul><li>CRS/NT (unlikely severe)</li><li>Infection risk (perhaps higher)</li></ul>                                                                               |
| Elranatamab <sup>6</sup>   | NCCN: 4+ prior                    | 61%              | ~15 m<br>NR      | <ul> <li>Cytopenias (unlikely severe)</li> </ul>                                                                                                                 |
| Talquetamab <sup>7,8</sup> | therapies                         | ~72%             | ~12m<br>NR       | <ul><li>Oral/taste toxicity (potentially severe)</li><li>Skin and nail toxicity</li></ul>                                                                        |

<sup>5</sup>van de Donk et al., ASCO 2023 abstract 8011 <sup>6</sup>Lesokhin et al., Nat Med, 29:2259–2267 (2023) <sup>7</sup>Chari et al., NEJM 2022 <sup>8</sup>Schinke et al., ASCO 2023 #8036

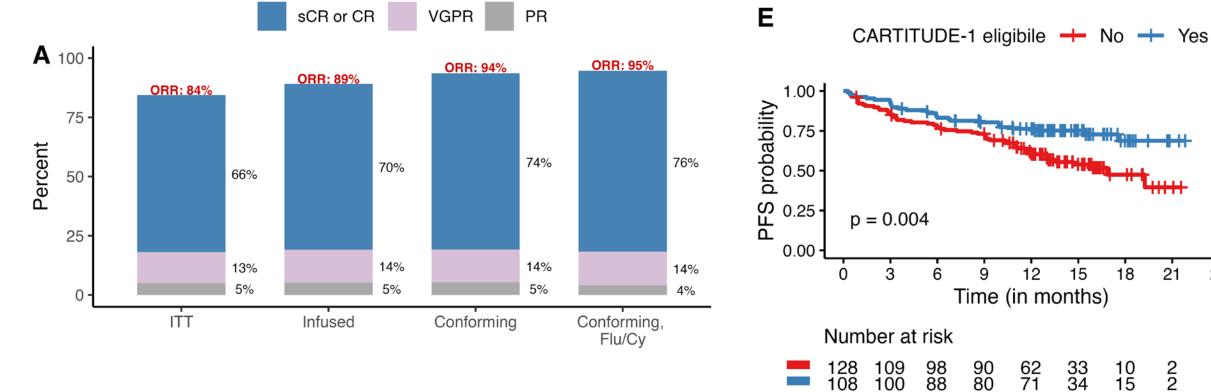


# Real-world outcomes with cilta-cel

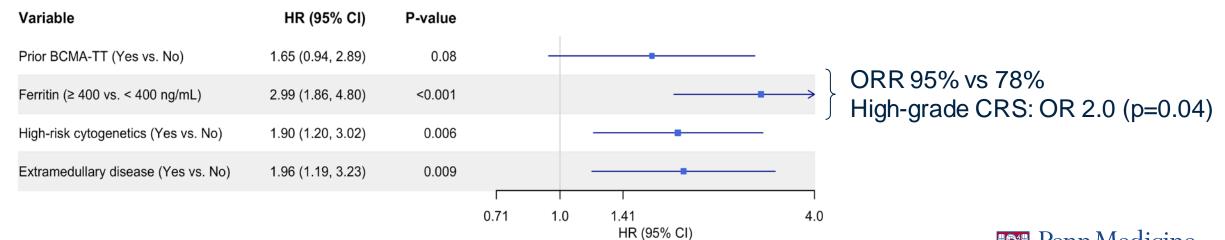
Report from US Myeloma Immunotherapy Consortium

|                          | RWE Cilta-cel<br>(N=236) | CARTITUDE-1<br>(N=97) <sup>1</sup> |
|--------------------------|--------------------------|------------------------------------|
| Age, median (range)      | 64 y (30-84)             | 61 y (56-68)                       |
| Age ≥ 70 years           | 62 (26%)                 | -                                  |
| Race: Black              | 26 (11%)                 | 17 (18%)                           |
| Ethnicity: Hispanic      | 19 (8%)                  | 6 (6%)                             |
| ECOG PS, 0-1             | 183 (89%)                | 93 (96%)                           |
| High-risk cytogenetics*  | 81 (39%)                 | 23 (24%)                           |
| R-ISS stage III          | 30 (19%)                 | ISS-3:14 (14%)                     |
| Extramedullary Disease** | 60 (26%)                 | 13 (13%)                           |
| BM Plasma cells ≥ 50%    | 35 (18%)                 | ≥ 60%= 21 (22%)                    |
| H/o plasma Cell Leukemia | 13 (6%)                  | 0                                  |
| H/o AL amyloidosis       | 8 (3%)                   | 0                                  |

| *High-risk cytogenetics: Del | 17p, t(14;16), t(4;14) |
|------------------------------|------------------------|
|------------------------------|------------------------|


\*\*EMD included patients with plasmacytomas non-contiguous from bone lesions

Sidana et al., IMS 2024; Blood 2024 (https://doi.org/10.1182/blood.2024025945)


|                                           | RWE Cilta-cel<br>(N=236) | CARTITUDE-1<br>(N=97) <sup>1</sup> |
|-------------------------------------------|--------------------------|------------------------------------|
| Prior Lines of Therapy                    | 6 (2-18)                 | 6 (4-8)                            |
| Prior Auto SCT                            | 200 (85%)                | 87 (90%)                           |
| Triple Class Refractory                   | 163 (69%)                | 85 (88%)                           |
| Penta Drug refractory                     | 70 (30%)                 | 41 (42%)                           |
| Prior BCMA Therapy                        | 33 (14%)                 | 0%                                 |
| BridgingTherapy                           | 184 (78%)                | 73 (75%)                           |
| PR ( $\geq$ 50% ) to Bridging             | 44 (27%)                 | 15 (21%)                           |
| Elevated baseline<br>ferritin > 400 ng/mL | 82 (35%)                 | -                                  |
| Flu/Cy Lymphodepletion                    | 191 (81%)***             | 97 (100%)                          |

\*\*\* Alternate lymphodepletion, bendamustine: 31(13%), cladribine + cyclophosphamide: 6 (3%); cyclophosphamide alone: 7 (3%), NA:1





#### Multivariable analysis for PFS



Sidana et al., IMS 2024; Blood 2024 (https://doi.org/10.1182/blood.2024025945)

21

2 2

24

0 0

8

Penn Medicine Abramson Cancer Center

# Real-world outcomes with cilta-cel

Report from US Myeloma Immunotherapy Consortium

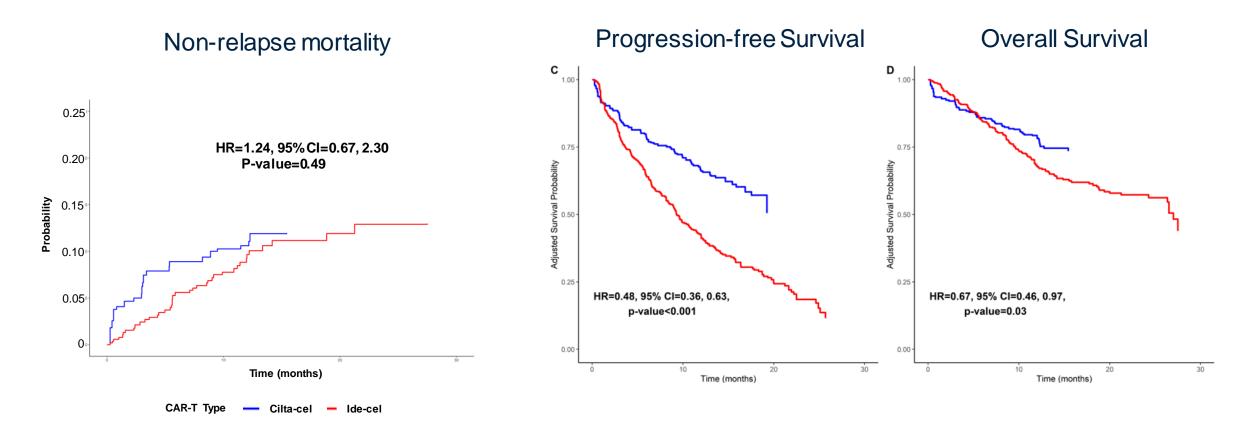
|                                                                        | Real-world<br>N=236                | CARTITUDE-1 <sup>1-2</sup><br>N=97     |
|------------------------------------------------------------------------|------------------------------------|----------------------------------------|
| CRS - Any grade<br>Grade ≥ 3                                           | 177 (75%)<br>12 (5%)               | 95%<br>4%                              |
| Median time to onset of CRS                                            | 7 days (0-14)                      |                                        |
| ICANS – Any grade<br>Grade ≥ 3                                         | 32 (14%)<br>9 (4%)                 | 17%<br>2%                              |
| Delayed neurotoxicity<br>Parkinsonism<br>Cranial nerve palsy<br>Others | 24 (10%)<br>5 (2%)<br>11 (5%)<br>8 | 12 (12%)<br>5 (5%)<br>1 (1%)<br>6 (6%) |
| IEC-HS/HLH                                                             | 5 (2%)                             | ~1%                                    |
| Severe infections                                                      | 49 (21%)                           | 20%                                    |

Other delayed NT: Diplopia in 4, posterior reversible encephalopathy syndrome (PRES) in 2, dysautonomia in 1 patient, and polyneuropathy in 1 patient

|                                           | Real-world<br>N=236 |
|-------------------------------------------|---------------------|
| Non-relapse mortality<br>(NRM)            | 23 (10%)            |
| <ul> <li>Infections</li> </ul>            | 12                  |
| • CRS                                     | 3                   |
| <ul> <li>CRS and infection</li> </ul>     | 1                   |
| <ul> <li>Delayed neurotoxicity</li> </ul> | 3                   |
| • IEC-HS                                  | 2                   |
| • ICANS                                   | 1                   |
| • SPM                                     | 1                   |
| SPMs                                      | 20 (8.5%)           |
| Excl. non-melanoma skin<br>cancer         | 13 (5.5%)           |
| Myeloid neoplasm/acute<br>leukemia        | 3 (1.3%)            |
| T cell lymphoma                           | 1                   |



Q

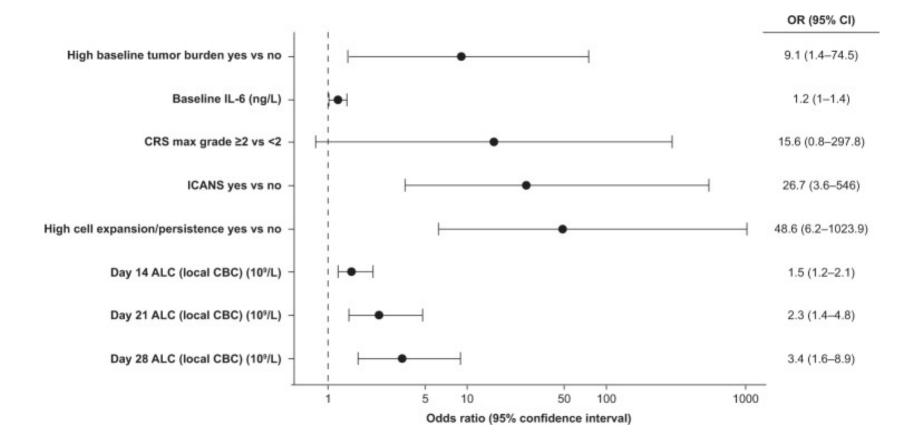

#### Sidana et al., IMS 2024; Blood 2024 (https://doi.org/10.1182/blood.2024025945)

#### Ide-cel vs cilta-cel real-world comparison (propensity-score matching from US Myeloma Immunotherapy Consortium)

Hansen et al. ASH 2024 [Abstract #936]



#### Ide-cel vs cilta-cel real-world comparison (propensity-score matching from US Myeloma Immunotherapy Consortium)






#### Hansen et al. ASH 2024 [Abstract #936]

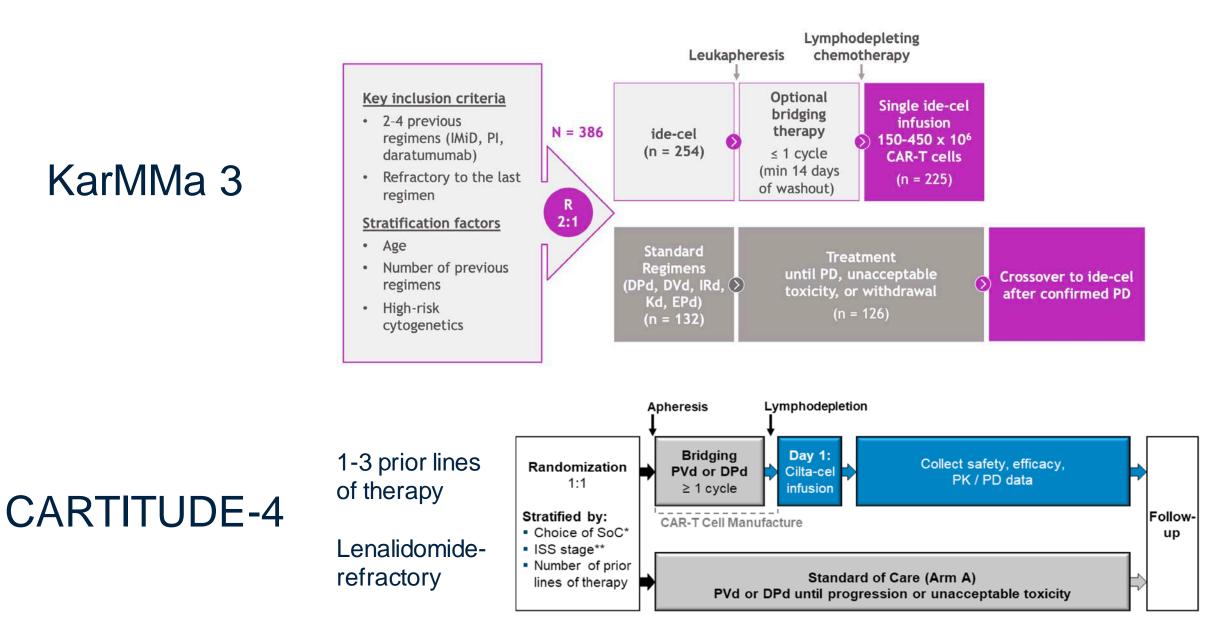
#### Tumor burden and severe CAR T cell toxicity

Risk of movement/neurocognitive toxicity after cilta-cel



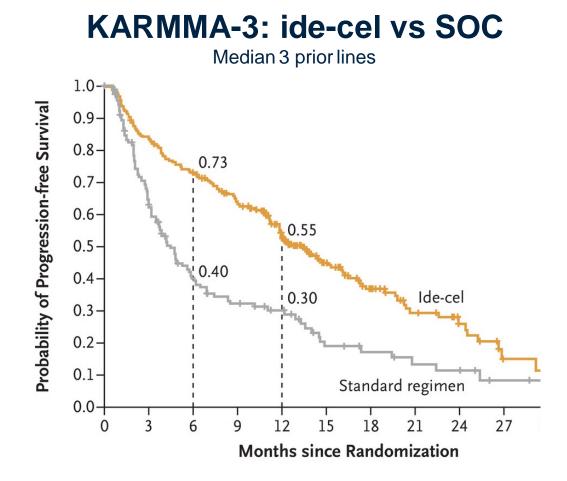


Cohen AD, Blood Cancer J. 2022 Feb; 12(2): 32


# Rationale for earlier line CAR T cell therapy

- Improved efficacy?
  - Healthier T cells  $\rightarrow$  better responses (maybe even cure?)
- Improved safety?
  - Lower disease burden
  - Better bridging options
- RCTs of CAR T cells in early-line MM therapy
  - Do CAR T cells confer net benefit?
  - What toxicities are attributable to CAR T cells?
  - What is the optimal timing?
    - Do CAR T cells work better when used earlier?
    - Where is the best risk/benefit balance?




# RCTs of ide-cel and cilta-cel in early lines of therapy

KarMMa 3

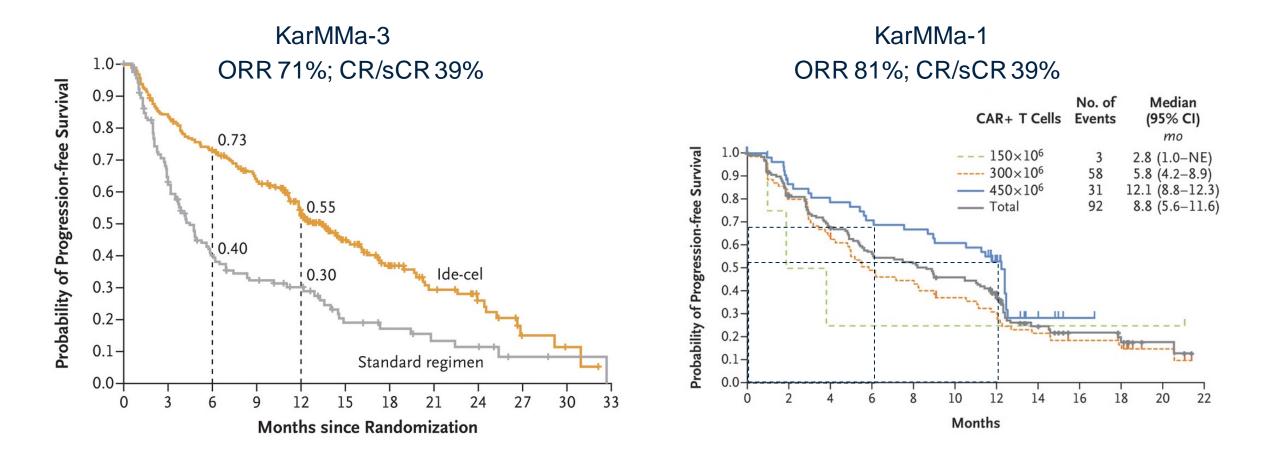


14

# Net benefit of CAR T cells vs SOC in intermediate line of therapy



**CARTITUDE-4: cilta-cel vs SOC** 


Median 2 prior lines

Rodriguez-Otero et al., N Engl J Med 2023; 388:1002-1014 Dhakal et al., ASCO 2023 LBA-106 & NEJM DOI: 10.1056/NEJMoa2303379 Mateos et al., IMS 2024



# Are CAR T cells more effective in early-line setting?

Ide-cel in intermediate-line vs late-line setting: similar ORR and PFS



Munshi et al., N Engl J Med 2021; 384:705-716 Rodriguez-Otero et al., N Engl J Med 2023; 388:1002-1014



# Are CAR T cells more effective in early-line setting?

Cilta-cel in 1-3 prior lines

Median 2 prior lines (range 1-3) 14% triple-class refractory 2% penta-drug refractory

Median 6 prior lines (range 3-18) 88% triple-class refractory 42% penta-drug refractory



#### Cilta-cel vs SOC safety

|                       |           | Conforming Cilta-cel As-treated Patients*<br>(N = 188) |                                |                           |                                |  |  |  |  |
|-----------------------|-----------|--------------------------------------------------------|--------------------------------|---------------------------|--------------------------------|--|--|--|--|
| CART-specific AEs     | Any Grade | Grade 3 – 4                                            | Median Time to Onset<br>(days) | Median Duration<br>(days) | Resolved<br>(%)                |  |  |  |  |
| CRS                   | 78%       | 3%                                                     | 8                              | 3                         | 99%                            |  |  |  |  |
| ICANS                 | 7%        | 0.5%                                                   | 9                              | 2                         | 93%                            |  |  |  |  |
| Cranial nerve palsy   | 9%        | 1%                                                     | 21                             | 77                        | 88%                            |  |  |  |  |
| Peripheral neuropathy | 7%        | 0.5%                                                   | 51                             | 168                       | 57%                            |  |  |  |  |
| MNT (Parkinsonism)    | 1%        | 0                                                      | 60                             | 265                       | Ongoing at<br>Clinical Cut-off |  |  |  |  |

#### No fatal CRS or neurotoxicity

Dhakal et al., ASCO 2023 LBA-106 & NEJM DOI: 10.1056/NEJMoa2303379

Mateos et al., IMS 2024

FDA Carvykti ODAC Materials 15 Mar 2024

https://www.fda.gov/advisory-committees/advisory-committee-calendar/march-15-2024-meeting-oncologic-drugs-

advisory-committee-meeting-announcement-03152024



#### Cilta-cel vs SOC safety

CAR+ lymphomas Harrison et al., NEJM Feb 2025

Dhakal et al., ASCO 2023 LBA-106 & NEJM DOI: 10.1056/NEJMoa2303379 Mateos et al., IMS 2024



#### Where is the sweet spot in the 1-4 prior lines window?

**Overall Survival in KarMMa-3** 

**Overall Survival in CARTITUDE-4** 

When crossover is permitted in next line of therapy, there is no OS advantage to earlier use.

Early OS trend may favor standard therapy in patients enrolled after 1 prior line of therapy.

FDA ODAC Materials 15 Mar 2024 https://www.fda.gov/advisory-committees/advisory-committee-calendar/march-15-2024-meeting-oncologic-drugsadvisory-committee-meeting-announcement-03152024



# **Conclusions from early-line CAR T cell studies**

#### Efficacy

- CAR T cell therapy (cilta-cel) improves overall survival in multiple myeloma
- Cilta-cel continues to appear more effective than ide-cel
- Cilta-cel efficacy appears better in 1-3 PL vs 4+ PL but not transformational (no plateau)
- Within early-line window (1-3 priors), not clear that earlier is better.

#### Safety

- CAR T cells appear safer in earlier lines compared to late-line (4+) usage.
  - No fatal CRS or neurologic toxicity
  - Less Parkinsonism
- Infections are comparable to SOC (worse earlier, better later)
- SPMs (including CAR+ lymphoma) appear higher with cilta-cel vs SOC
- ~10% cilta-cel patients have long-lived and/or life-threatening toxicities (SPMs, neurologic)
- Our practice: cilta-cel in 3<sup>rd</sup> line for most patients, 2<sup>nd</sup> line for high-risk patients (not using much ide-cel)

# Where does this leave bispecific antibodies?

- Patients who need rapid disease control
- Patients who do not want to bear risk of CAR T cell therapy
- Patients who cannot access CAR T cell therapy
- Older/frail patients who may not tolerate CAR T cell therapy
- Patients relapsing after CAR T cell therapy
- Bridging therapy to enable CAR T cell therapy

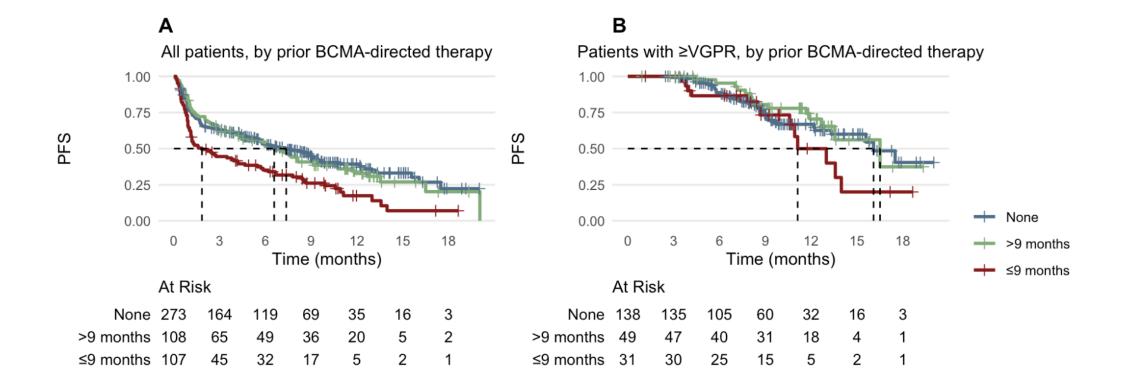
|                            | Indication                        | ORR  | PFS/DOR        | Toxicity                                                                                  |
|----------------------------|-----------------------------------|------|----------------|-------------------------------------------------------------------------------------------|
| Teclistamab <sup>4,5</sup> | FDA: 4+ prior<br>lines of therapy | 63%  | 12.5 m<br>24 m | <ul><li>CRS/NT (unlikely severe)</li><li>Infection risk (perhaps higher)</li></ul>        |
| Elranatamab <sup>6</sup>   | NCCN: 4+ prior                    | 61%  | ~15 m<br>NR    | <ul> <li>Cytopenias (unlikely severe)</li> </ul>                                          |
| Talquetamab <sup>7,8</sup> | therapies                         | ~72% | ~12m<br>NR     | <ul><li>Oral/taste toxicity (potentially severe)</li><li>Skin and nail toxicity</li></ul> |



# Where does this leave bispecific antibodies?

- Patients who need rapid disease control
- Patients who do not want to bear risk of CAR T cell therapy
- Patients who cannot access CAR T cell therapy
- Older/frail patients who may not tolerate CAR T cell therapy
- Patients relapsing after CAR T cell therapy
- Bridging therapy to enable CAR T cell therapy

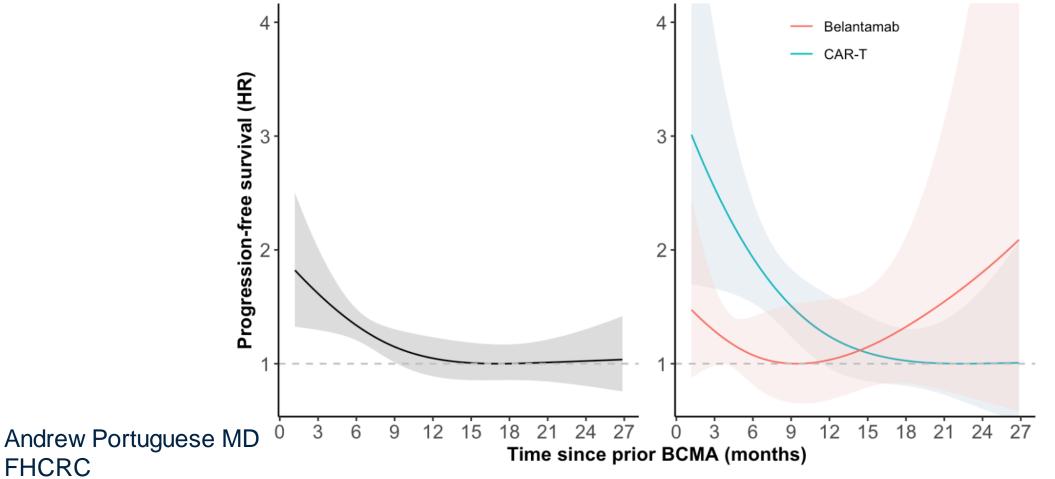
|                            | Indication                        | ORR  | PFS/DOR        | Toxicity                                                                                  |
|----------------------------|-----------------------------------|------|----------------|-------------------------------------------------------------------------------------------|
| Teclistamab <sup>4,5</sup> | FDA: 4+ prior<br>lines of therapy | 63%  | 12.5 m<br>24 m | <ul><li>CRS/NT (unlikely severe)</li><li>Infection risk (perhaps higher)</li></ul>        |
| Elranatamab <sup>6</sup>   | NCCN: 4+ prior                    | 61%  | ~15 m<br>NR    | <ul> <li>Cytopenias (unlikely severe)</li> </ul>                                          |
| Talquetamab <sup>7,8</sup> | therapies                         | ~72% | ~12m<br>NR     | <ul><li>Oral/taste toxicity (potentially severe)</li><li>Skin and nail toxicity</li></ul> |




Teclistamab (anti-BCMA) real-world analysis from US MM Immunotherapy Consortium (N=509)

|                                 | <b>N = 236</b> <sup>7</sup> |                 | ≥PR  |        | ≥VGPR |         |
|---------------------------------|-----------------------------|-----------------|------|--------|-------|---------|
| BCMA-directed agent(s) received |                             |                 | %    | aOR    | %     | aOR     |
| lde-cel                         | 93 (39%)                    |                 | 70   | aon    | 70    | aon     |
| Belantamab                      | 59 (25%)                    | No prior BCMA   | 58%  |        | 51%   |         |
| Ide-cel & Belantamab            | 32 (14%)                    |                 | 56%  | 0.07   | 45%   | 0.47    |
| Other                           | 31 (13%)                    | Prior BCMA >9M  |      | 0.67   |       | 0.47    |
| Cilta-cel                       | 11 (4.7%)                   |                 | 0070 | p=0.4  | 1070  | p=0.11  |
| Belantamab & Other              | 6 (2.5%)                    |                 |      | 0.37   |       | 0.28    |
| Cilta-cel & Belantamab          | 2 (0.8%)                    | Prior BCMA < 9M | 39%  |        | 30%   |         |
| Ide-cel & Other                 | 2 (0.8%)                    |                 |      | p=0.02 |       | p=0.006 |

Razzo et al., Under review (please do not post)


Teclistamab (anti-BCMA) real-world analysis from US MM Immunotherapy Consortium (N=509)





Razzo et al., Under review (please do not post)

Teclistamab (anti-BCMA) real-world analysis from US MM Immunotherapy Consortium (N=509)





FHCRC



#### MonumenTAL: Phase 1/2 Talquetamab Monotherapy

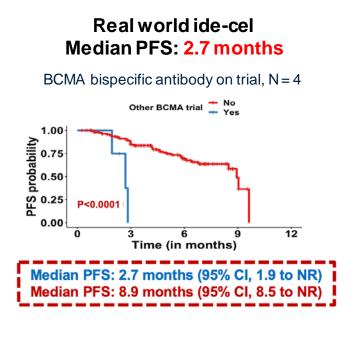
|                          | Cohort                                     | 0.4 mg/        | kg (n=143) | 0.8 mg/kg    | (n=145)   | Prior TCR     | (n=51)    |
|--------------------------|--------------------------------------------|----------------|------------|--------------|-----------|---------------|-----------|
| Median follow-up9-15 mos | Median age, years                          |                | 67         | 67           | ,         | 61            |           |
|                          | EMD (%)                                    |                | 23         |              | 25        |               |           |
| Select patient           | High-risk cytogenetic (%)                  |                | 31         | 29           |           | 41            |           |
| characteristics          | ISS stage III (%)                          |                | 20         | 24           |           | 18            |           |
|                          | Median prior LoTs, n (range)               | 5 (            | 2–13)      | 5 (2–        | 17)       | 6 (3–         | 15)       |
|                          | TCR (%)                                    |                | 74         | 74 69        |           | 84            |           |
|                          | ORR (%)                                    |                | 74         | 72           |           | 65            |           |
|                          | Patients achieving ≥CR (%)                 | 34             |            | 39           |           | 35            |           |
| Kovefficeov              | mDoR, mo (95% CI)                          | 9.5 (6.7–13.3) |            | NR (13.0–NE) |           | 11.9 (4.8–NE) |           |
| Key efficacy<br>outcomes | 12-mo DoR in patients<br>achieving ≥CR (%) | 79             |            | 91           |           | 81            |           |
|                          | 12-mo PFS rate (%)                         | 35             |            | 54           |           | 38            |           |
|                          | 12-mo OS rate (%)                          | 76             |            | 77           |           | 63            |           |
|                          | Patients achieving ≥CR (%)                 |                | 34         |              | 39        |               |           |
|                          | AEs, n (%)                                 | Any grade      | Grade 3/4  | Any grade    | Grade 3/4 | Any grade     | Grade 3/4 |
| Key safety               | CRS                                        | 113 (79.0)     | 3 (2.1)    | 108 (74.5)   | 1 (0.7)   | 39 (76.5)     | 1 (2.0)   |
| outcomes                 | Dysgeusia                                  | 103 (72.0)     | NA         | 103 (71.0)   | NA        | 39 (76.5)     | NA        |
|                          | Infections                                 | 84 (58.7)      | 28 (19.6)  | 96 (66.2)    | 21 (14.5) | 37 (72.5)     | 14 (27.5) |
|                          | Skin related                               | 80 (55.9)      | 0          | 106 (73.1)   | 1 (0.7)   | 35 (68.6)     | 0         |
|                          | ICANS                                      | 10.7%          | NA         | 8.3%         | NA        | 2.9%          | NA        |

4.9%

8.3%

7.8%

Discontinuations due to AEs

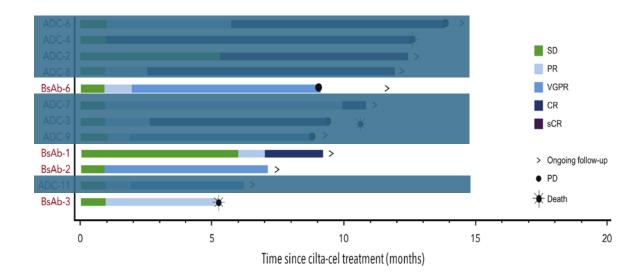

Schinke CD et al. ASCO 2023. Abstract 8036.

- If late relapse after anti-BCMA CAR T cells, our data would support preference for anti-BCMA bispecific (avoids GPRC5D toxicity, similar responses as BCMAnaïve patients).
- For early relapse, would prefer talquetamab, but anti-BCMA bispecific is not futile (30% VGPR).



# Does bsAb therapy preclude future CAR T cell therapy?

- Reports of both ide-cel and cilta-cel after prior bsAb suggest poor response
- Numbers are small, and these were primarily patients who had not responded to prior bsAb.




No prior bispecific N=155

#### Cilta-cel after prior BCMA-directed therapy (CARTITUDE-2)

Among 7 prior bsAb patients who received cilta-cel:

- 5 had <u>not responded</u> to the prior bsAb
- 4 responded to cilta-cel Responders had longer time from prior bsAb to CAR





#### **Does bsAb therapy preclude future CAR T cell therapy?**

- Reports of both ide-cel and cilta-cel after prior bsAb suggest poor response
- Numbers are small, and these were primarily patients who had not responded to prior bsAb.
- Longer time from prior anti-BCMA therapy may help

Cilta-cel realworld data

Sidana et al., IMS 2024; Blood 2024 (https://doi.org/10.1182/blood.2024025945)



# Where does this leave bispecific antibodies?

- Patients who need rapid disease control
- Patients who do not want to bear risk of CAR T cell therapy
- Patients who cannot access CAR T cell therapy
- Older/frail patients who may not tolerate CAR T cell therapy
- Patients relapsing after CAR T cell therapy
- Bridging therapy to enable CAR T cell therapy

|                            | Indication                        | ORR  | PFS/DOR        | Toxicity                                                                                  |
|----------------------------|-----------------------------------|------|----------------|-------------------------------------------------------------------------------------------|
| Teclistamab <sup>4,5</sup> | FDA: 4+ prior<br>lines of therapy | 63%  | 12.5 m<br>24 m | <ul><li>CRS/NT (unlikely severe)</li><li>Infection risk (perhaps higher)</li></ul>        |
| Elranatamab <sup>6</sup>   | NCCN: 4+ prior                    | 61%  | ~15 m<br>NR    | <ul> <li>Cytopenias (unlikely severe)</li> </ul>                                          |
| Talquetamab <sup>7,8</sup> | therapies                         | ~72% | ~12m<br>NR     | <ul><li>Oral/taste toxicity (potentially severe)</li><li>Skin and nail toxicity</li></ul> |



#### **Talquetamab bridging therapy**

|                                                    | N=12                                           |
|----------------------------------------------------|------------------------------------------------|
| Age, median years                                  | 61 (50-75)                                     |
| Male, sex                                          | 5 (42)                                         |
| ECOG>=2                                            | 2 (17)                                         |
| High risk disease/EM<br>disease                    | 7 (58)/5 (42)                                  |
| Median prior lines                                 | 6 (4-10)                                       |
| Median time from Tal<br>dose to apheresis,<br>days | 94 (28-174)                                    |
| Response to<br>Talquetamab                         | 11/12 (92)                                     |
| CAR-T infusion                                     | 8/12 (67)                                      |
| Reasons for not infusion                           | Manufacturing failure (2)*,<br>PD (1), OOS (1) |

50 cilta-cel; 15 ide-cel

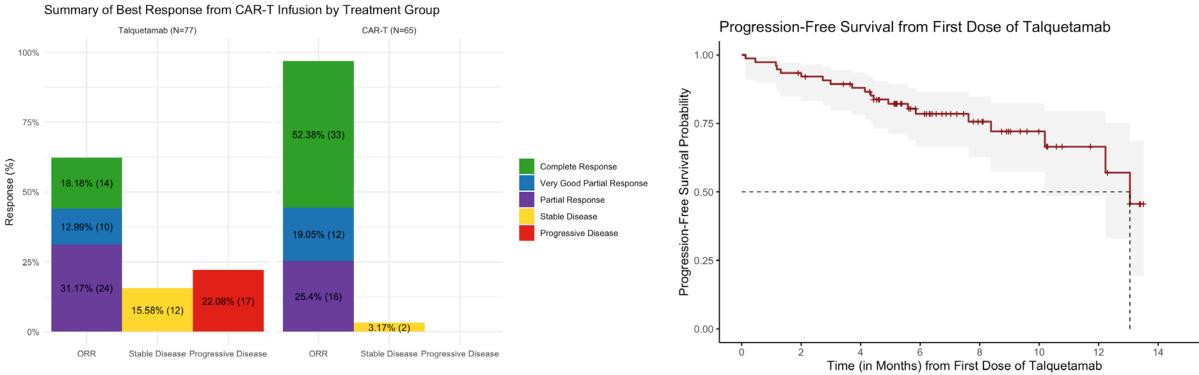


Dhakal et al., ASH 2024

## **Talquetamab bridging therapy**

|                              | N=65                           |           |           |
|------------------------------|--------------------------------|-----------|-----------|
|                              | All grades                     | Grade 3/4 | То        |
| CRS                          | 47 (72%)                       | 2 (3%)    |           |
| ICANS                        | 7 (10%)                        | 1 (2%)    | To        |
| Delayed neurotoxicity        | 1 (1.5%) (CN VII palsy)        | 0         | inf       |
| Infections                   | 16 (27%)                       | 6 (9%)    | No        |
| Second malignancies          | 1 (1.5%) (AML TP53 and DNMT3A) | NA        | C/<br>1 / |
| Severe cytopenia<br>(day+60) | 7 (10%)                        | 7 (10%)   |           |

Total deaths overall: 16


Total deaths after CAR-T infusion: 8

Non relapse mortality after CAR:3 (2 sepsis/shock and 1 AML/MDS)



Dhakal et al., ASH 2024

# **Talquetamab bridging therapy**



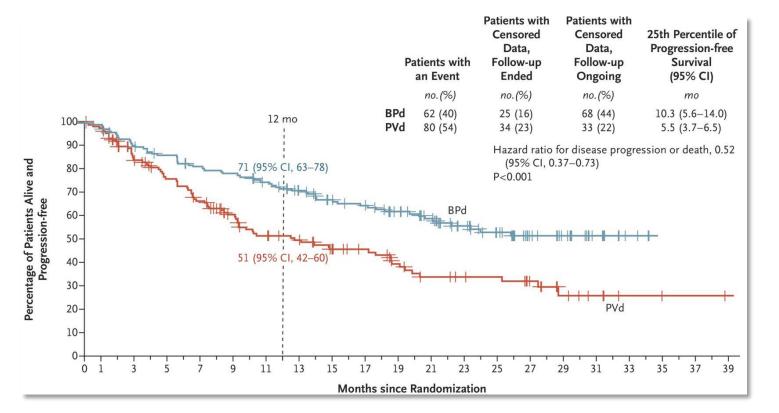
\*CAR-T response was calculated as the best response amongst 30 day, 3 month, and 6 month follow-up, where available



Dhakal et al., ASH 2024

# Outline

- What we do now and why?
  - CAR T cells: how early?
  - Sequencing of CAR T cells, bispecific antibodies, and targets


#### Where are we going?

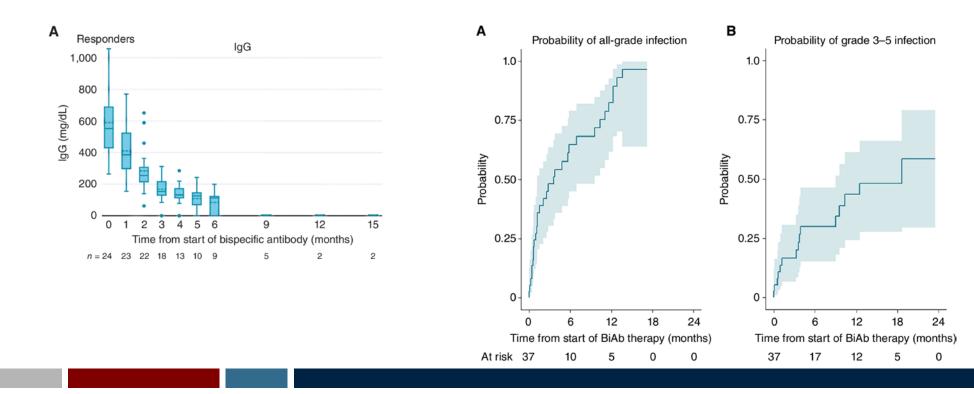
- Role for belantamab
- Fixed-duration bispecific antibody therapy
- New agents (trispecifics, anito-cel, etc)
- Ongoing first- and early-line trials





#### Belantamab mafadotin + pomalidomide (BPd vs VPd (DREAMM-8) ≥1 prior lines, lenalidomide-exposed




| Response                       | BPd<br>(N=155) | PVd<br>(N=147) |
|--------------------------------|----------------|----------------|
| ≥PR                            | 77%            | 72%            |
| ≥VGPR                          | 64%            | 38%            |
| ≥CR                            | 40%            | 16%            |
| MRD-neg ≥CR                    | 24%            | 5%             |
| Sustained (12m)<br>MRD-neg ≥CR | 8%             | 1%             |

#### Dimopoulos et al., N Engl J Med 2024;391:408-421



# Fixed duration bispecific antibody therapy

- Continuous anti-BCMA bsAb therapy has significant infection risk.
- Anecdotal reports of long-term responses to fixed duration therapy.
- In early lines, continuous therapy could extend many years and be quite burdensome.





Lancman et al., Blood Cancer Discov (2023) 4 (6): 440-451.

# Fixed duration bispecific antibody therapy

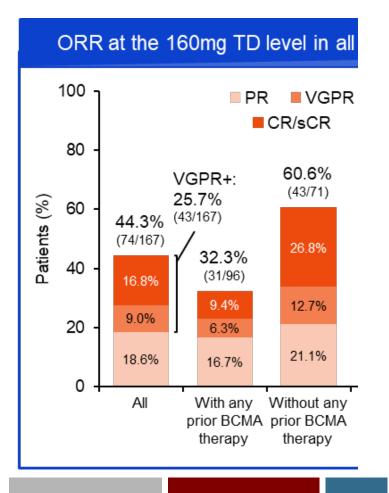
- Continuous anti-BCMA bsAb therapy has significant infection risk.
- Anecdotal reports of long-term responses to fixed duration therapy.
- In early lines, continuous therapy could extend many years and be quite burdensome.

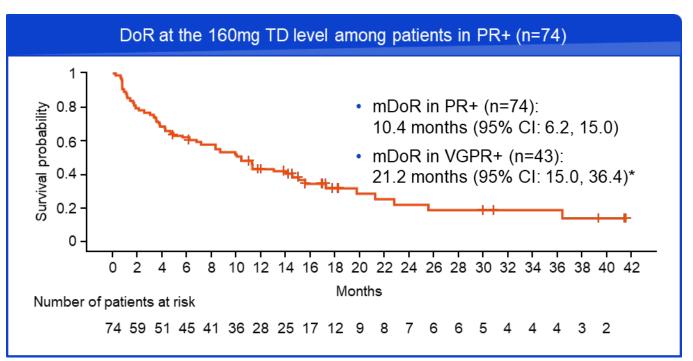
### **Limited-duration Teclistamab**

ClinicalTrials.gov ID 

NCT05932680

Sponsor () Abramson Cancer Center at Penn Medicine


Information provided by 
 Abramson Cancer Center at Penn Medicine (Responsible Party)

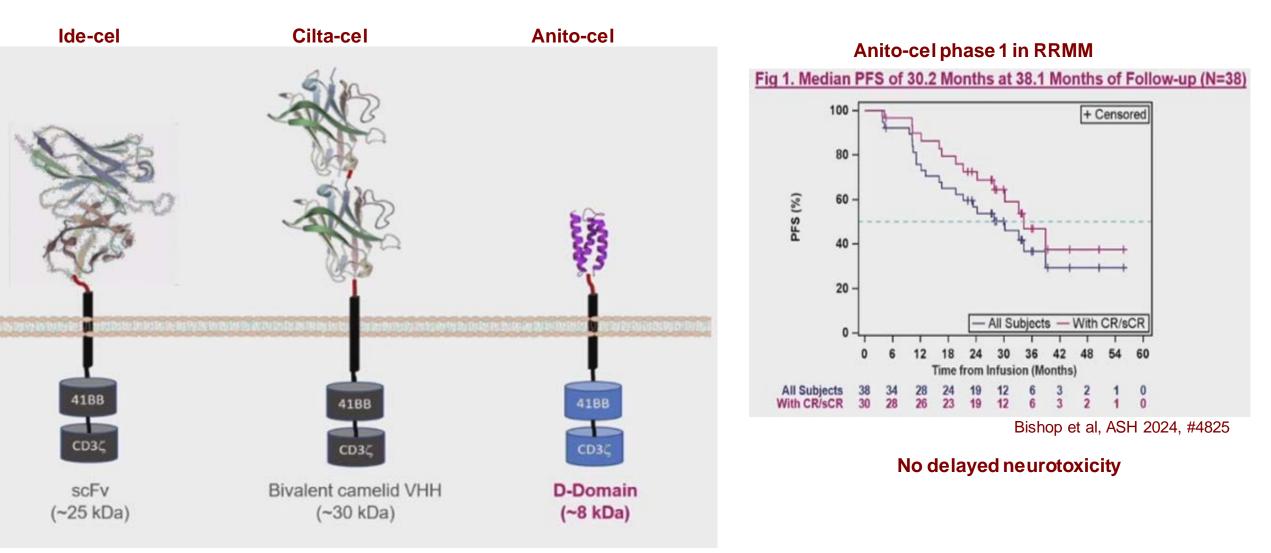

Last Update Posted 1 2023-07-27



# Cevostamab (FcRH5 x CD3 bsAb) phase 1 update

#### <u>At RP2D (160mg q3wks IV x 17 cycles)</u> Median 6 lines, 96% triple-class refractory 58% prior BCMA tx



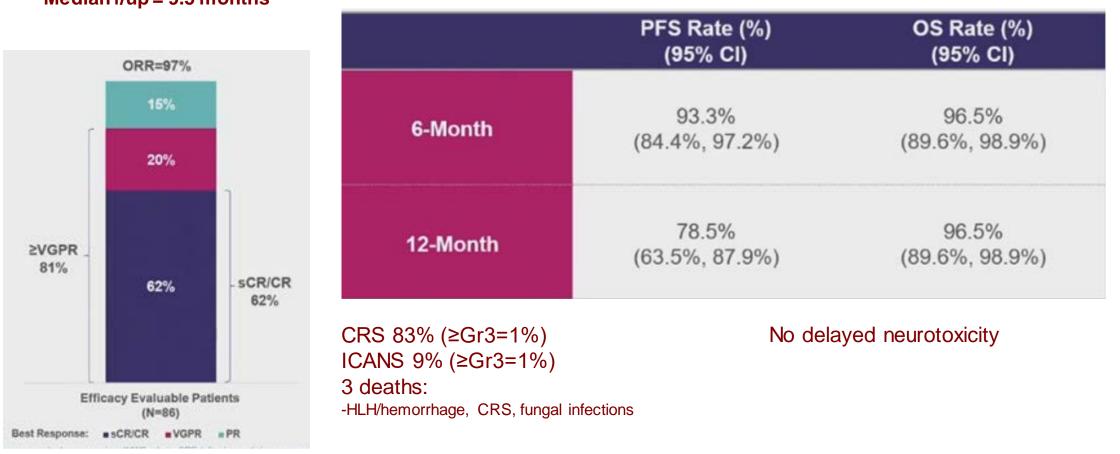



At RP2 step-up (n=30): CRS 63% (0% Gr 3-4)

| N (%) of patients                                    | n=167     |
|------------------------------------------------------|-----------|
| AE of infection                                      | 91 (54.5) |
| Gr 3–5 AE of infection                               | 32 (19.2) |
| Gr 3                                                 | 24 (14.4) |
| Gr 4                                                 | 2 (1.2)   |
| Gr 5 (fatal)                                         | 6 (3.6)   |
| SAE of infection                                     | 37 (22.2) |
| AE of infection leading to treatment discontinuation | 10 (6.0)  |



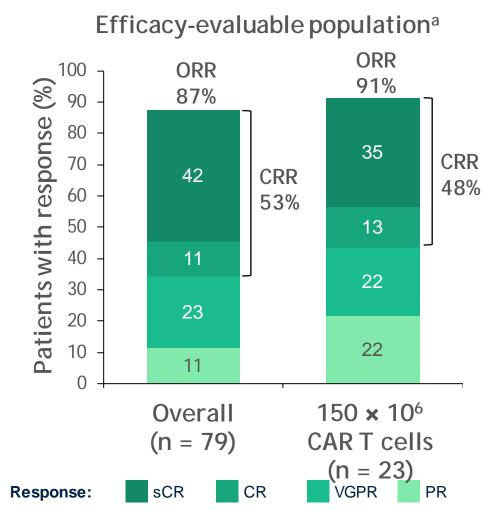
## Anito-cel (CART-ddBCMA) for rel/ref MM






# Anito-cel (CART-ddBCMA) for rel/ref MM

### iMMagine-1 Phase 2 registration study

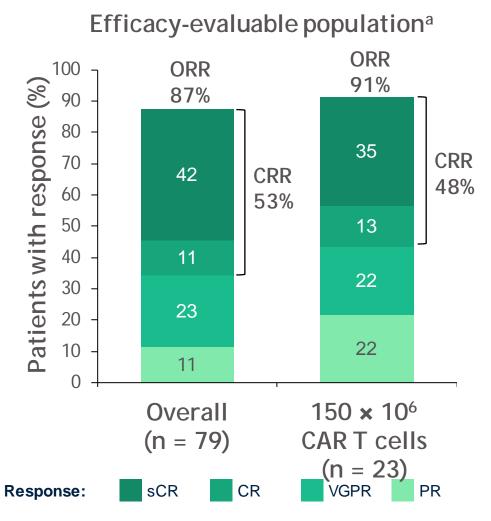

Median 4 lines, 87% triple-class refractory, 0% BCMA tx Median f/up = 9.5 months



Phase 3 anito-cel vs SOC in 1-3 priors opened late 2024



# Arlo-cel (anti-GPRC5D CAR)




| Disease characteristic              | n/N   | ORR (%)<br>(95% CI) |
|-------------------------------------|-------|---------------------|
| Triple class-refractory             |       |                     |
| Yes                                 | 52/60 | 87 (75-94)          |
| No                                  | 17/19 | 89 (67-99)          |
| Extramedullary disease              |       |                     |
| Yes                                 | 31/36 | 86 (71-95)          |
| No                                  | 38/43 | 88 (75-96)          |
| High-risk cytogenetics <sup>b</sup> |       |                     |
| Yes                                 | 26/31 | 84 (66-95)          |
| No                                  | 43/48 | 90 (77-97)          |
| Previous BCMA-targeted therapy      |       |                     |
| Yes                                 | 30/38 | 79 (63-90)          |
| No                                  | 39/41 | 95 (84-99)          |
| Yes; refractory                     | 13/16 | 81 (54-96)          |
| 60 70 80 90 100                     |       |                     |
| ORR (%)                             |       |                     |

Bal et al., ASH 2024 #922



# Arlo-cel (anti-GPRC5D CAR)



Bal et al., ASH 2024 #922



# Arlo-cel (anti-GPRC5D CAR)

| Select TRAEs                                      | All treated paters (N = 84) |           |  |  |
|---------------------------------------------------|-----------------------------|-----------|--|--|
|                                                   | Any grade                   | Grade 3/4 |  |  |
| CRS, n (%)                                        | 69 (82)                     | 3 (4)     |  |  |
| ICANS, n (%)                                      | 8 (10)                      | 2 (2)     |  |  |
| Other select neurotoxicity, <sup>a</sup> n (%)    | 10 (12)                     | 6 (7)     |  |  |
| MAS/HLH, n (%)                                    | 0                           | 3 (4)     |  |  |
| On-target/off-tumor skin, nail, and/or oral event |                             |           |  |  |
| Skin                                              |                             |           |  |  |
| Patients with an event, n (%)                     | 25 (30)                     | 0         |  |  |
| Patients with resolved event(s), n (%)            | 22                          | 22 (88)   |  |  |
| Median time to resolution <sup>b</sup>            | 26                          | 26 days   |  |  |
| Nail                                              |                             |           |  |  |
| Patients with an event, n (%)                     | 16 (19)                     |           |  |  |
| Patients with resolved event(s), n (%)            | 12                          | 12 (75)   |  |  |
| Median time to resolution <sup>b</sup>            | 98                          | 98 days   |  |  |
| Oral, including dysgeusia and dysphagia           |                             |           |  |  |
| Patients with an event, n (%)                     | 27 (32)                     | 0         |  |  |
| Patients with resolved event(s), n (%)            | 19                          | 19 (70)   |  |  |
| Median time to resolution <sup>b</sup>            | 66 days                     |           |  |  |

- CRS was predominantly grade 1 or 2
  - One patient had grade 5 CRS at the 450  $\times$  10<sup>6</sup> DL
- Most patients with skin, nail, and/or oral on target off tumor toxicity did not require intervention (79%)
- Five patients experienced weight loss
- Other select neurotoxicity episodes occurred at the 150–450  $\times$  106 DLs
  - Defined as dizziness, ataxia, neurotoxicity, dysarthria, and/or nystagmus
  - None were grade 4/5; median time to onset was 30.5 days
- No cases of parkinsonism, Guillain-Barré syndrome, or cranial nerve palsy

 Dizziness, ataxia, neurotoxicity, dysarthria, and/or nystagmus

Data cutoff: August 23, 2024. <sup>a</sup>Preferred CTCAE terms of dizziness, ataxia, neurotoxicity, dysarthria, and/or nystagmus. <sup>b</sup>Calculated from all resolved episodes, including separately considering individual episodes that occurred in 1 patient. AE, adverse event; CRS, cytokine release syndrome; CTCAE, Common Terminology Criteria for Adverse Events; DL, dose level; HLH, hemophagocytic lymphohistiocytosis; MAS, macrophage activation syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome; TRAE, treatment-related adverse event.



### Bal et al., ASH 2024 #922

## **Dual-target approaches**

 T&T: ORR 80%, EMD ORR 61%, 86% of responses ongoing @ 18M

 BCMA/GPRC5DxCD3 trispecific (JNJ-79635322)

#### ORIGINAL ARTICLE

## Talquetamab plus Teclistamab in Relapsed or Refractory Multiple Myeloma

Authors: Yael C. Cohen, M.D., Hila Magen, M.D., Moshe Gatt, M.D., Michael Sebag, M.D., Ph.D., Kihyun Kim, M.D., Chang-Ki Min, M.D., Enrique M. Ocio, M.D., Ph.D., +16, for the RedirecTT-1 Investigators and Study Group Author Info & Affiliations

Published January 8, 2025 | N Engl J Med 2025;392:138-149 | DOI: 10.1056/NEJMoa2406536 | <u>VOL. 392 NO. 2</u> Copyright © 2025

### Characterization of JNJ-79635322, a Novel BCMAxGPRC5DxCD3 T-Cell Redirecting Trispecific Antibody, for the Treatment of Multiple Myeloma

Ram Pillarisetti, Danlin Yang, Jianhong Yao, Melissa Smith, Leopoldo Luistro, Peter Vulfson, James Testa, Jr., Kathryn Packman, Scott Brodeur, Ricardo M. Attar, Yusri Elsayed, Ulrike Philippar

Check for updates

Blood (2023) 142 (Supplement 1): 456.

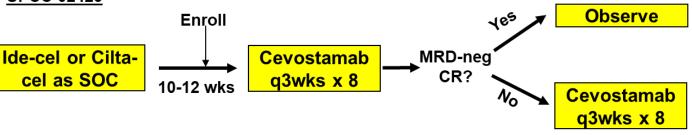
https://doi.org/10.1182/blood-2023-174941



## **Dual-target approaches**

ISB 2001: CD38/BCMAxCD3 trispecific. Phase 1 ORR 75%

#### 1026 First Results of a Phase 1, First-in-Human, Dose Escalation Study of ISB 2001, a BCMAxCD38xCD3 Targeting Trispecific Antibody in Patients with Relapsed/Refractory Multiple Myeloma (RRMM)


Program: Oral and Poster Abstracts Type: Oral Session: 654. Multiple Myeloma: Pharmacologic Therapies: Into the Future: New Drugs and Combinations in Multiple Myeloma Hematology Disease Topics & Pathways: Drug development, Bispecific Antibody Therapy, Treatment Considerations, Biological therapies

#### Monday, December 9, 2024: 5:45 PM

Hang Quach, MD, FRACP, FRCPA, MBBS<sup>1</sup>, Bradley Augustson, MBBS, FRACP, FRCPA<sup>2\*</sup>, Hanlon Sia, MBBS FRACP FRCPA<sup>3\*</sup>, Nishi Shah, MBBS, MPH<sup>4</sup>, Eben I Lichtman, MD<sup>5</sup>, Michaela Liedtke, MD<sup>6</sup>, Camille Martinet<sup>7\*</sup>, Vinu Menon<sup>8\*</sup>, Andrew Garton, PhD<sup>9\*</sup>, Maria Pihlgren<sup>10\*</sup>, Beata Holkova, MD<sup>11</sup>, Cyril Konto, MD<sup>8</sup>, Lida Pacaud, MD<sup>12\*</sup> and Amit Khot, MD, FRACP, FRCPath, MBBS, MRCP<sup>13\*</sup>

CAR/bispecific combination approaches

#### UPCC 02423



Cohen et al, Blood 2023;142(Suppl 1):3389



# **Ongoing early-line studies**

(will update later)



